university satellite design review at s5lab

Post on 28-Jan-2017

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

University Satellite Design Review at S5Lab

Sapienza Space Systems and Space Surveillance Laboratory

Fabio Santoni DIAEE – Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica

Università degli Studi di Roma “la Sapienza”

Tokyo,13January2016

Fabrizio Piergentili DIMA – Dipartimento di Ingegneria Meccanica e Aerospaziale

Università degli Studi di Roma “la Sapienza”

v S5LabAc)vity

v UniversitySatelliteDevelopment

v S5LabFacili)es

v URSAMAIORnano-satellite

v  IKUNSnano-satellite

v Studentsatellitedesignprocessandreview

v Conclusions

INDEX

v University Satellites

•  Mission analysis •  On-board systems/sub-system •  Complete satellite MAIT •  Ground station operations •  Data handling and processing

v Space surveillance systems

•  Optical observation systems •  Data analysis •  Orbit determination •  Active debris removal systems •  Spectral analysis

S5LabACTIVITY

v URSA MAIOR (3U Cubesat, QB50) v IKUNS (Italian-Kenyan University Nano Satellite) v EQUO (EQUatorial Observatory for space debris)

v REXUS/BEXUS programme

ON-GOING SPACE PROJECTS

v S5LabAc)vity

v UniversitySatelliteDevelopment

v S5LabFacili)es

v URSAMAIORnano-satellite

v  IKUNSnano-satellite

v Studentsatellitedesignprocessandreview

v LessonsLearned(Conclusions)

INDEX

UNIVERSITY SATELLITES •  It is a functional spacecraft, rather than a payload instrument

or component. To fit the definition, the device must operate in space with its own independent means of communications and command

•  Untrained personnel (i.e. students) performed a significant fraction of key design decisions, integration & testing, and flight operations • Teach how to manage resources (budget, mass, power, time) • Teach how to perform group-working

• The training of people is as important as (if not more important) the nominal “mission” of the spacecraft itself

SMALL SATELLITE DEVELOPMENT

v  Design v  Manufacturing

v  Testing v  Operations

v S5LabAc)vity

v UniversitySatelliteDevelopment

v S5LabFacili)es

v URSAMAIORnano-satellite

v  IKUNSnano-satellite

v Studentsatellitedesignprocessandreview

v Conclusions

INDEX

S5Lab FACILITIES •  MANUFACTURING(StructureandElectronics)

EngineeringFacultyMachineWorkshop

S5LabElectronicLaboratoryandrelatedequipment

S5LabMillingMachine

S5Lab FACILITIES

Low-VacuumChamber

•  TESTING

S5Lab3DHelmholtzcoilsystem(Magne)cfieldsimulator)

S5Labfric)onlessairbearingsystemforspacecraTaUtudedynamicsandcontrol

tes)ng

S5LabSunSimulator

S5Lab3DoFADCStest-bedequippedwith

ControlMomentGyros(CMGs)

S5Lab FACILITIES •  OPERATION:

S5LabURBEGS

S5LabRemotelycontrolledspacedebrisobservatory

S5LabGSmanagementfacili)es

v S5LabAc)vity

v UniversitySatelliteDevelopment

v S5LabFacili)es

v URSAMAIORnano-satellite

v  IKUNSnano-satellite

v Studentsatellitedesignprocessandreview

v Conclusions

INDEX

University of Rome la SApienza Micro Attitude In ORbit testing

URSA MAIOR

QB50 scientific project aims to study in-situ temporal and spatial variations of a number of key constituents and

parameters in the lower thermosphere (400 km) with a network of 50 CubeSats

QB50 Project

Scientific/Technological Payloads

mNLP ARTICA MEMIT

URSA MAIOR Architecture

Main OBC

ADCS OBC

Telemetry board

Surrey ADCS & GPS

mNLP (University of Oslo)

RADIO UHF/VHF

SOLAR PANELS

& NiCd Battery

MEMIT

ARTICA

LEGEND:

inhousedevelopedelectronics

COTS/ScienceUnit

PC104bus

non-PC104bus

testpayloads

URSA MAIOR 1st Prototype URSA MAIOR

Proto-Flight model

URSA MAIOR CAD

URSA MAIOR FEM

DEVELOPMENT OVERVIEW

zy

x

VIBRATION TESTING

v S5LabAc)vity

v UniversitySatelliteDevelopment

v S5LabFacili)es

v URSAMAIORnano-satellite

v  IKUNSnano-satellite

v Studentsatellitedesignprocessandreview

v Conclusions

INDEX

Concurrent Engineering Facility

ASI - Concurrent Engineering Facility

v S5LabAc)vity

v UniversitySatelliteDevelopment

v S5LabFacili)es

v URSAMAIORnano-satellite

v  IKUNSnano-satellite

v Studentsatellitedesignprocessandreview

v Conclusions

INDEX

Typical Space Project Lifecycle and Development Steps

FULLPROJECTLIFECYCLE•  Defini5onofrequirements•  DesignandDevelopment•  BuildandIntegra5on•  Tes5ngandVerifica5on•  Launch•  Opera5ons•  DataAnalysis•  Documenta5on•  FormalPresenta5onofResults

STEPSTOA(Hopefully)SUCCESSFULMISSION1.  Agreeontheobjec5ves2.  Definerequirements3.  Makeaprojectplan4.  Design5.  Reviewthedesign6.  Manufacture7.  Verifyrequirementsaremet

8.  Launch9.  Opera5ons

S5Lab typical Project Lifecycle

FULLPROJECTLIFECYCLE•  Defini5onofrequirements•  DesignandDevelopment•  BuildandIntegra5on•  Tes5ngandVerifica5on

•  Launch•  Opera5ons•  DataAnalysis•  Documenta5on•  FormalPresenta5onofResults

STEPSTOA(Hopefully)SUCCESSFULMISSION1.  Agreeontheobjec5ves2.  Definerequirements3.  Makeaprojectplan4.  Designthemissionandsystem5.  Reviewthedesign6.  Manufacture7.  Verifyrequirementsaremet8.  Launch9.  Opera5ons

QuickandstronglyItera)veProcess,includingproofofconceptprototypes

S5Lab Nanosat Development Phases Protoflightapproach,dueto)meandbudgetconstraintsØ  PreliminaryDesign(3months,typical)

•  Define:Mission,Payloads,SpacecraWarchitecture•  Preliminary:designbudgets,CADdrawings,…

Ø  1stPrototype(4months,typical)•  Detailedsystemdesign•  Builda(preliminary)prototypeofthespacecraW,including:structure,

electronics,mechanicalinterfacestopayloads,mechanisms(ifany)…•  Verifyelectronics,components,lowlevelsoWwarerou5nes,interfaces…..•  Verifyharnesslayout,satelliteassemblyandintegra5onprocedures•  Tes5ng(Vibra5on,Thermal)

Ø  Protoflight(5months,typical)•  Fixerrors,selectfinalcomponents,updateassemblyprocedures•  Develop(highlevel)soWware•  Verifyandeventuallyfix“local”errors•  Verifyassemblyandintegra5onprocedures•  Tes5ng(Vibra5on,Thermal,ThermalVacuum)

Nanosat Preliminary Design Process Ideas(mission,payload(s),solu)ons…)

Definemissionobjec)vesandmissionscenario

Preliminarypayload’sand/orP/Linterfacedesign

PreliminaryspacecraTdesign

Costanalysis,budgetconstraints

Stateoftheart,commercialavailabilityofcomponents/subsystems

DefineRequirements

Nanosat Preliminary Design Process •  Missionandpayloadideas(Phd,MscThesis,Professors)

Ø  InternalLabPayloads(e.g.Technicaldemostra)on,inorbittes)ng)Ø  ExternalPayloads(e.g.fundingagencyrequirements,scien)ficcoopera)on)

•  PayloadObjec)veDefini)onandDesign(interfacedesignforexternalpayloads)•  SpacecraTsubsystemsandsystemdesign

HINT:Ø  Selectatleastonesimplepayloadtomeetminimalsuccesscriteria(e.g.contact

andtelemetrydownload)anddevotethenecessarybudgettothat,usingflight-provenhardware.

OUTPUT:Ø  MissionScenarioØ  ElectronicsBlockDiagramsØ  Preliminaryselec)onandinfoon)metodeliveryofelectronicparts/components

CADDrawingsofthepreliminaryspacecraTand/orpayloadØ  CostanalysisØ  TimelinePlanningoftheac)vi)es

Ø  DURATION:1-3months

Detailed Design and 1st Prototype •  Detailedsystemdesign•  Builda(preliminary)prototypeofthespacecraW,including:structure,

electronics,mechanicalinterfacestopayloads,mechanisms(ifany)…•  Verifyelectronics,components,lowlevelsoWwarerou5nes,interfaces…..•  Verifyassemblyandintegra5onprocedures•  Tes5ng(Vibra5on,Thermal)•  Eventuallyreviewdesignbasedonprocurementissues(e.g.discon5nued

products…..)

OUTPUT:

Ø  DetailedfinaldesignfortheProtoflightmodelØ  PossiblyWorkingpartsandsubsystemsfortheProtoflightmodelØ  Consciousandrealis)cTimelinePlanningofac)vi)es)lllaunchØ  Procurementofallpartsneededforprotoflight

Ø  DURATION:3-5months

Proto-flight Model •  BuildthespacecraW,including:structure,electronics,mechanicalinterfacesto

payloads,mechanisms(ifany)…•  DevelopcompleteflightsoWware•  DevelopcompletegroundsoWware•  ExtensiveTes5ng(On-boardsoWwarealongwithgroundsta5onsoWware,

ExtensiveFunc5onaltes5ng,EnvironmentalTes5ng,including,Vibra5on,Thermal,Thermal-vacuum)

•  Completefunc5onaltes5ngaWerenvironmentaltes5ng

OUTPUT:Ø  Satellitereadyforlaunch

Ø  DURATION:4-8months

Team Organization

PhdStudents(3studentsforURSAMAIORandIKUNS)Designresponsibility

MScThesis(about10peryear)Detaileddesigns,tes5ngprocedures,tests,

MScCourseinSpacecraTDesign(about25studentsperyear)Designac5vity,stateoftheartreviews,missionanalysis….)

BScThesis(about15peryear)Detaileddesigns,manufacturing,tes5ngprocedures,assistantintests,

BScCoursesinSpaceSystemsandSpaceSystemsLab(40students/year)Detailedtasks(e.g.execu5onoftests,partdesign…)

Professors Dailyinterac,on,Quickfeedback,FastDecisionMaking

Make or Buy? Ø  Ifbudgetallows,“Buy”saves)meandimprovesreliability

Ø  However,evenifbudgetallows,onemaychooseto“Make”•  foreduca)onpurposes•  togainexperienceinapar)cularfield•  tosaverecurrentcostinfuturemissions

Ø  “Make”isobviouswhenwhatyouneedisnotonthemarket

Ø  “Make”involvesadevelopmentprocesswhichrequiresdesignandtes5ngitera5ons

Ø  TypicalproductdevelopmentatS5Labwhenthereareitemsinvolvinga“Make”:•  Preliminarydesign•  1stprototype(mock-up)•  DesignrefinementandProtoflightmodel

Design process and review at S5Lab 1.  AtS5Labthedesignteamissmallandtypicallynoexternalen55esare

involvedincri5caldesignac5vi5es,hencewecanfocusmainlyontheDesignprocess,morethanonthedesignreview.

2.  Thedesignteamistypicallysmall(upto10people),whichallowssharingofideas,problemsandsolu5ononadailybasis,mostlyinperson,tosave5me

3.   Thedesignistheresultofateamwork.Alldecisionsaretakentogether.Thisminimizesthepossibilityoferrors.

4.   Exchangeoinforma)onisfastand“informal”.Everyteammemberisupdated“real-)me”ondecisionsanddesignupdates

5.   Tools:•  MissionanalysissoTware(orbit,visibility,aUtude,thermal)•  CAD(mechanicalandelectronics)•  subsystemprototypes

6.   Aformalreviewistypicallynotrequired,sincethedesignisrevieweddaybyday

Lessons learned at S5Lab in University nanosats 1.  Donotspendtoomuch5meindesigningdetailsintheearlyphaseoftheproject.Do

notpretendtoreachthefinaldesignbasedonlyonpaper,CADdrawings,numericalsimula)ons.Asoppositetocommonsense,prototypescansave)meandefforts,bygivingmuchmoreinsightintothesystemandprovidinginputsforsolu5onsthatwork.

2.   Designyoursystemfromthebeginningbearinginmindaccessibilityandtes)ng.Verifybytes)ng.Simula5onscanhighlightmanyaspects,notall.

3.  Atleasttwoitera)ons(includingprototypes)arenecessarytoreachthefinalprotoflightmodel

4.  Checkavailabilityofpartsandprocureearly5.  Defineaminimumsimpletaskandusefligh-provenhardwareforthat,sothatyoucan

claimamissionsuccess.Completefailureisfrustra5ng.6.   Keepcomplexitylow.Asastudent,don’tpretendtodevelopcomplexmissionsina

universitycurriculum5me.7.  Limitformaldocumenta5ononlytoexternalen55esinvolved(e.g.launchprovider).

KeeptrackofthedesigndirectlybysoWware(CADmodel,PCBlayoutsoWware….)8.   ConcurrentEngineeringTools(ifavailable)makethedesignprocesseasierand

systema5c.Highlyinstruc5veforstudents

top related