thorium spectroscopy

Post on 30-Oct-2021

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Thorium Spectroscopy

Center for Quantum Engineering and Space Time Research Leibniz Universität Hannover

Physikalisch-Technische Bundesanstalt, Braunschweig

Department of Time & Frequency

Tanja E. Mehlstäubler

Physics with Trapped Charged Particles – Les Houches, 19 January 2012

Outline  

   Why  is  nuclear  laser  spectroscopy  difficult?  -­‐ -­‐229  

-­‐229  as  a  precise  optical  nuclear  clock  • Application search for

Energy  scales:  Photon  in  optical  range:      

eV 2

Nucleus:  bound  nucleon                                                                                                (rest  energy  of  proton:  938  MeV)    

m 105 15x

MeV 83,0x)2(

2

2

pmpx

Atomic  shell:  bound  electron                                                                                         (rest  energy  of  electron:  0,51  MeV)  

m 10 10x

eV 8,3x)2(

2

2

empx

Visible  light  not  matched  to  energy  scales  in  nucleus  

204 rqE

e-­‐  Shell:        Nucleus:    

I:  

202

1LcEI

Electric  field  scales  inside  atom  /  nucleus  

2 32

2 15

W/cm 10 5 . 4 W/cm 10 5 . 2

I E E I E E

N L

S L

V/m 10 8 . 5 m 10 5 19 15 N E r

V/m 10 4 1 m 10 11 10 S E r .

Intensity  Limit:  

e-­‐  shell-­‐field  strength:      reachable  nuclear  electr.  field  strength:      far  beyond  

                                     

Maximum  intensity  of  short-­‐pulse  laser  

Mourou et al., Phys. Today 51, 22 (1998)

2 24 max

12

2

2

max

W/cm 10

10

I

N

c v h N I

Ph

Ph

area of ampl. medium transition cross section

   

multipole-­‐radiation  of  order  l:  (antenna  length  =  5  ×10-­‐15  m)  

Long-­‐  e.g.  Ta-­‐180:  natural  isomer,  

l  =8)  at  75.3  keV,    half  time  >  1015  a  !  

(Jackson, Classical Electrodynamics)

 

eV 1 at s 100 ) 1 (

10 ) ( ) (

1 8 2

E

l

E

r r P l

Mößbauer-­‐spectrum  of  93.3  keV  resonance  of  Zn-­‐67  

Q x Potzel et al., J. Phys., Colloq. 37, 691 (1976)  

Nuclear  spectroscopy  still  holds  record  in  resolution  

 -­‐99      

Hg-­‐201      W-­‐183           Energies  on  the  order  U-­‐235           of  excitation  energy    -­‐229           of  electronic  shell  

 

2150  eV     1561  eV        544  eV          73  eV  

   7.8  eV      

 

Outline  

   Why  is  nuclear  laser  spectroscopy  difficult?       -­‐ -­‐229  

-­‐229  as  a  precise  optical  nuclear  clock  • Application search for

actinides

- from 233U -decay - half-life 7880 years

229Th:

Nuclear  structure  of  thorium-­‐229  

K. Gulda et al., Nuclear Physics A 703, 45 (2002)

-­‐lying  band-­‐heads:  ground  state  and  isomer  

Nilsson state classification

since 1970s!

Some  History    

 and  in  the  range  of  outer  shell  electronic  transitions.    

   Studied  by  C.W.  Reich  et  al.  at  INL  since  the  1970s,             from   -­‐spectroscopy:  3.5  ±  1.0  eV,  published  in  1994  

                isomer  lifetime,  coupling  to  electronic  excitations  (   )  

    -­‐233  decay  chain  in  1997/98    

   Proposal  of  nuclear  laser  spectroscopy  and  nuclear  clock      

   Unsuccessful  search  for  optical  nuclear  excitation  or  decay  

   More  precise  energy  measurement  from   -­‐spectroscopy  at  LLNL:     7.6  ±  0.5  eV,  published  in  2007  

   2011:  still  no  direct  detection  of  the  optical  transition;            

-­‐229  isomer  

-­‐          from  the  71.82-­‐keV-­‐  

98,  142501  (2007)    

   Isomer  energy:          Difference  of  the  doublet  splittings:            7.6  ±  0.5  eV          (corr.:  7.8  ±  0.5  eV,  LLNL-­‐Proc-­‐415170)    

-­‐UV  at  about  160  nm    

   

   Why  is  nuclear  laser  spectroscopy  difficult?  -­‐ -­‐229  

    -­‐229  as  a  precise  optical  nuclear  clock  • Application search for

A  high-­‐precision  nuclear  clock  

   

can  be  smaller  than  in  an  (electronic)  atomic  clock.  e.g.  Zeeman  shifts…  

µN  =  5  x  10-­‐27    

µB  =  9  x  10-­‐24      

[633]  5  _  +  2  

3  _  +  2  

[631]  

 E=7.8  eV  M1  transition  

 s  

229  

229m  

=0.4   N  Q=3.1·∙10-­‐28  e·∙m2  

=-­‐0.08   N  ·∙10-­‐28  e·∙m2  

A  high-­‐precision  nuclear  clock  

Frequency shifts that only depend on |n,L,S,J> are common in both levels and do not change the transition frequency For structureless point-like nucleus

ground and excited state shifts are identical

Campbell et al., arXiv:1110.2490v1 (2011) Peik et al., EPL 61, 181 (2003)

 

Dehmelt  et  al.  1986  

Cycling  transition    for  detection   Clock  transition  to  

 

-­‐229  nuclear  clocks:    Laser-­‐ 3+  in  an  ion  trap     2  

Experimental  problem:    

not  a  system  for  high  resolution  spectroscopy  yet.  

   

    +   -­‐doped  crystals     3+  ions  

UCLA  /  LANL:     -­‐doped  crystals     -­‐doped  crystals  

     

….      

3+               -­‐)  

 can  be  laser-­‐cooled  using  diode  lasers  &                              

 electronic  and  nuclear  resonances  are  separated  in  energy  

229 3+  

Campbell et al., Phys. Rev.Lett 106, 223001 (2011)

3+  

Loading via laser ablation with ns pulsed Nd:YAG (tripled) Trap L = 188 mm r = 3.3 mm, taylored for efficient

loading of ablation plume Trapping and cooling 103 – 104 Th3+ ions (Th-229 & Th-232)

(enhanced loading efficiency with initial buffer gas cooling)

Campbell et al., Phys. Rev.Lett 106, 223001 (2011)

3+  

Low lying energy levels in 229Th3+ :

229Th3+

232Th3+

cooling on 1088 nm line to tens of K cooling to tens of mK on lambda

scheme sympathetic cooling on even

isotope (no HF!) for lowest temperatures

Laser cooled ion crystals:

Campbell et al., arXiv:1110.2490v1 (2011)

Ground  state  in  299 3+  for  clock  spectroscopy?  

or metastable S-state: Peik et al., EPL 61, 181 (2003)

With laser cooled and trapped ion fractional frequency inaccuray

as low as 10-19

should be possible!

Clock transition from ground state (5F5/2):

Doped  solid-­‐ +  

Th+

Optical  Mössbauer  Spectroscopy         -­‐ions  in  a  solid  

!                        -­‐                -­‐    no  impurities  /  color  centers            -­‐    symmetric            -­‐    diamagnetic             2   Crystal doped with 1 nucleus per 3: 1014 ions per cm3

- simple fluorescence detection is possible - initial broadband excitation experiment with synchrotron light    

Doped  solid-­‐ +  

Th4+

Optical  Mössbauer  Spectroscopy         -­‐ions  in  a  solid  

!     First experiments at ALS in Berkeley:  -­‐     -­‐  -­‐     232  -­‐    Measured  fluorescence  background  from   -­‐decay    

0.1 nm!    

Doped  solid-­‐ n+  

Th4+

Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010)

    -­‐15      electric  crystal  field  shifts  may  be  »  10-­‐15        (e.g.  contact  interaction  nucleus  /  e-­‐  cloud)                  

   

4  (tetragonal):    Vzz  =  5×1021  V/m2  

-­‐ !  use  cubic  crystal  symmetry  

Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010)    

 

-15

work at cryogenic temperature to freeze out lattice fluctuations

Search  for  nuclear  resonance  in  229 +  

 -­‐    

Electron  Bridge  Processes  

 

from  the  electron  shell  to  the  nucleus        Excitation  of  the  shell  in  a  2-­‐photon  process  

         Excitation  rate  may  be  strongly  enhanced  at    

                      +        

hyperfine  structure  

 

nucleus  

electrons  

atomic resonance  line  at  402  nm  tunable  laser  to  search  for  nuclear  resonance  

N  E1    

         10  s-­‐1            laser  parameters    

Excitation  rate  as  a  function  of  nuclear  resonance    frequency  (elect.  levels  from  ab-­‐initio  calculations)    

-­‐photon  electron  bridge  excitation  rate  

105,  182501  (2010)  

Laser spectroscopy of trapped Th+ ions at PTB

- Linear Paul trap for buffer gas cooled clouds of Th+ (N >105) - Laser ablation loading (N2-Laser, now Nd:YAG laser) - Fluorescence detection in several spectral channels

Laser spectroscopy of trapped Th+ ions

- Laser excitation in Th+ leads to population of many metastable levels - These are quenched by collisions or emptied with repumper lasers

Decay channels for the 402 nm resonance line

Th+ Level Scheme

search  range  only    

 

density  expected      

±1

402 nm

3 x 800 nm

   Why  is  nuclear  laser  spectroscopy  difficult?  -­‐ -­‐229  

-­‐229  as  a  precise  optical  nuclear  clock  • Application search for

Reinhold et al., PRL 96, 151101 (2006) Murphy et al., Mon. Not. R. Astron. Soc. 345, 609 (2003)

Equivalence Principle: fundamental constants need to be constant in time

Are fundamental constants really constant?

=

=

1-16

117

yr10)2.30.0(ln

yr10)7.24.2(ln

tRyt

Dzuba et al. PRL 82 (1999)

Hg+ Al+/Hg+

Yb+

Present status:

Laboratory Tests

Sensitivity factor A of different atomic transitions to a potential drift of

lnln;lnlnln FA

tA

tRy

tf

ff

Dzuba et al. PRL 82 (1999)

Laboratory Tests

Sensitivity factor A of different atomic transitions to a potential drift of

229Th A ~ 10,000 . . .

! lnln;lnlnln FA

tA

tRy

tf

ff

Scaling of the 229Th transition frequency in terms of and quark masses: V. Flambaum et al., Phys. Rev. Lett. 97, 092502 (2006)

105 enhancement in sensitivity results from near perfect cancellation of O(MeV) contributions to nuclear level energies

Th-229: most sensitive probe in a search for

Solution: measure isomer shift ( <r²>) and get better estimate for change in Coulomb energy! J. C. Berengut et al., PRL 102, 210808 (2009)

But: it depends a lot on nuclear structure!

See for example: Hayes et al., Phys. Rev. C 78, 024311 (2008) (|A| 103) Litvinova et al., Phys. Rev. C 79, 064303 (2009) (|A| 4×104)

> 10 theory papers 2006 - 2009

   locate  transition  at  160    10  nm  

 • evaluate clock systematics

To Do List for Thorium Trappers

Piet Schmidt

Ekkehard Peik

T.E.M.

Optical Clock Groups at PTB:

Christian Tamm Uwe Sterr

top related