thorium spectroscopy

39
Thorium Spectroscopy Center for Quantum Engineering and Space Time Research Leibniz Universität Hannover Physikalisch-Technische Bundesanstalt, Braunschweig Department of Time & Frequency Tanja E. Mehlstäubler Physics with Trapped Charged Particles Les Houches, 19 January 2012

Upload: others

Post on 30-Oct-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thorium Spectroscopy

Thorium Spectroscopy

Center for Quantum Engineering and Space Time Research Leibniz Universität Hannover

Physikalisch-Technische Bundesanstalt, Braunschweig

Department of Time & Frequency

Tanja E. Mehlstäubler

Physics with Trapped Charged Particles – Les Houches, 19 January 2012

Page 2: Thorium Spectroscopy

Outline  

   Why  is  nuclear  laser  spectroscopy  difficult?  -­‐ -­‐229  

-­‐229  as  a  precise  optical  nuclear  clock  • Application search for

Page 3: Thorium Spectroscopy

Energy  scales:  Photon  in  optical  range:      

eV 2

Nucleus:  bound  nucleon                                                                                                (rest  energy  of  proton:  938  MeV)    

m 105 15x

MeV 83,0x)2(

2

2

pmpx

Atomic  shell:  bound  electron                                                                                         (rest  energy  of  electron:  0,51  MeV)  

m 10 10x

eV 8,3x)2(

2

2

empx

Visible  light  not  matched  to  energy  scales  in  nucleus  

Page 4: Thorium Spectroscopy

204 rqE

e-­‐  Shell:        Nucleus:    

I:  

202

1LcEI

Electric  field  scales  inside  atom  /  nucleus  

2 32

2 15

W/cm 10 5 . 4 W/cm 10 5 . 2

I E E I E E

N L

S L

V/m 10 8 . 5 m 10 5 19 15 N E r

V/m 10 4 1 m 10 11 10 S E r .

Page 5: Thorium Spectroscopy

Intensity  Limit:  

e-­‐  shell-­‐field  strength:      reachable  nuclear  electr.  field  strength:      far  beyond  

                                     

Maximum  intensity  of  short-­‐pulse  laser  

Mourou et al., Phys. Today 51, 22 (1998)

2 24 max

12

2

2

max

W/cm 10

10

I

N

c v h N I

Ph

Ph

area of ampl. medium transition cross section

Page 6: Thorium Spectroscopy

   

multipole-­‐radiation  of  order  l:  (antenna  length  =  5  ×10-­‐15  m)  

Long-­‐  e.g.  Ta-­‐180:  natural  isomer,  

l  =8)  at  75.3  keV,    half  time  >  1015  a  !  

(Jackson, Classical Electrodynamics)

 

eV 1 at s 100 ) 1 (

10 ) ( ) (

1 8 2

E

l

E

r r P l

Page 7: Thorium Spectroscopy

Mößbauer-­‐spectrum  of  93.3  keV  resonance  of  Zn-­‐67  

Q x Potzel et al., J. Phys., Colloq. 37, 691 (1976)  

Nuclear  spectroscopy  still  holds  record  in  resolution  

Page 8: Thorium Spectroscopy

 -­‐99      

Hg-­‐201      W-­‐183           Energies  on  the  order  U-­‐235           of  excitation  energy    -­‐229           of  electronic  shell  

 

2150  eV     1561  eV        544  eV          73  eV  

   7.8  eV      

 

Page 9: Thorium Spectroscopy

Outline  

   Why  is  nuclear  laser  spectroscopy  difficult?       -­‐ -­‐229  

-­‐229  as  a  precise  optical  nuclear  clock  • Application search for

Page 10: Thorium Spectroscopy

actinides

- from 233U -decay - half-life 7880 years

229Th:

Page 11: Thorium Spectroscopy

Nuclear  structure  of  thorium-­‐229  

K. Gulda et al., Nuclear Physics A 703, 45 (2002)

-­‐lying  band-­‐heads:  ground  state  and  isomer  

Nilsson state classification

since 1970s!

Page 12: Thorium Spectroscopy

Some  History    

 and  in  the  range  of  outer  shell  electronic  transitions.    

   Studied  by  C.W.  Reich  et  al.  at  INL  since  the  1970s,             from   -­‐spectroscopy:  3.5  ±  1.0  eV,  published  in  1994  

                isomer  lifetime,  coupling  to  electronic  excitations  (   )  

    -­‐233  decay  chain  in  1997/98    

   Proposal  of  nuclear  laser  spectroscopy  and  nuclear  clock      

   Unsuccessful  search  for  optical  nuclear  excitation  or  decay  

   More  precise  energy  measurement  from   -­‐spectroscopy  at  LLNL:     7.6  ±  0.5  eV,  published  in  2007  

   2011:  still  no  direct  detection  of  the  optical  transition;            

Page 13: Thorium Spectroscopy

-­‐229  isomer  

-­‐          from  the  71.82-­‐keV-­‐  

98,  142501  (2007)    

   Isomer  energy:          Difference  of  the  doublet  splittings:            7.6  ±  0.5  eV          (corr.:  7.8  ±  0.5  eV,  LLNL-­‐Proc-­‐415170)    

-­‐UV  at  about  160  nm    

   

Page 14: Thorium Spectroscopy

   Why  is  nuclear  laser  spectroscopy  difficult?  -­‐ -­‐229  

    -­‐229  as  a  precise  optical  nuclear  clock  • Application search for

Page 15: Thorium Spectroscopy

A  high-­‐precision  nuclear  clock  

   

can  be  smaller  than  in  an  (electronic)  atomic  clock.  e.g.  Zeeman  shifts…  

µN  =  5  x  10-­‐27    

µB  =  9  x  10-­‐24      

[633]  5  _  +  2  

3  _  +  2  

[631]  

 E=7.8  eV  M1  transition  

 s  

229  

229m  

=0.4   N  Q=3.1·∙10-­‐28  e·∙m2  

=-­‐0.08   N  ·∙10-­‐28  e·∙m2  

Page 16: Thorium Spectroscopy

A  high-­‐precision  nuclear  clock  

Frequency shifts that only depend on |n,L,S,J> are common in both levels and do not change the transition frequency For structureless point-like nucleus

ground and excited state shifts are identical

Campbell et al., arXiv:1110.2490v1 (2011) Peik et al., EPL 61, 181 (2003)

Page 17: Thorium Spectroscopy

 

Dehmelt  et  al.  1986  

Cycling  transition    for  detection   Clock  transition  to  

 

Page 18: Thorium Spectroscopy

-­‐229  nuclear  clocks:    Laser-­‐ 3+  in  an  ion  trap     2  

Experimental  problem:    

not  a  system  for  high  resolution  spectroscopy  yet.  

   

    +   -­‐doped  crystals     3+  ions  

UCLA  /  LANL:     -­‐doped  crystals     -­‐doped  crystals  

     

….      

Page 19: Thorium Spectroscopy

3+               -­‐)  

 can  be  laser-­‐cooled  using  diode  lasers  &                              

 electronic  and  nuclear  resonances  are  separated  in  energy  

229 3+  

Page 20: Thorium Spectroscopy

Campbell et al., Phys. Rev.Lett 106, 223001 (2011)

3+  

Loading via laser ablation with ns pulsed Nd:YAG (tripled) Trap L = 188 mm r = 3.3 mm, taylored for efficient

loading of ablation plume Trapping and cooling 103 – 104 Th3+ ions (Th-229 & Th-232)

(enhanced loading efficiency with initial buffer gas cooling)

Page 21: Thorium Spectroscopy

Campbell et al., Phys. Rev.Lett 106, 223001 (2011)

3+  

Low lying energy levels in 229Th3+ :

229Th3+

232Th3+

cooling on 1088 nm line to tens of K cooling to tens of mK on lambda

scheme sympathetic cooling on even

isotope (no HF!) for lowest temperatures

Laser cooled ion crystals:

Page 22: Thorium Spectroscopy

Campbell et al., arXiv:1110.2490v1 (2011)

Ground  state  in  299 3+  for  clock  spectroscopy?  

or metastable S-state: Peik et al., EPL 61, 181 (2003)

With laser cooled and trapped ion fractional frequency inaccuray

as low as 10-19

should be possible!

Clock transition from ground state (5F5/2):

Page 23: Thorium Spectroscopy

Doped  solid-­‐ +  

Th+

Page 24: Thorium Spectroscopy

Optical  Mössbauer  Spectroscopy         -­‐ions  in  a  solid  

!                        -­‐                -­‐    no  impurities  /  color  centers            -­‐    symmetric            -­‐    diamagnetic             2   Crystal doped with 1 nucleus per 3: 1014 ions per cm3

- simple fluorescence detection is possible - initial broadband excitation experiment with synchrotron light    

Doped  solid-­‐ +  

Th4+

Page 25: Thorium Spectroscopy

Optical  Mössbauer  Spectroscopy         -­‐ions  in  a  solid  

!     First experiments at ALS in Berkeley:  -­‐     -­‐  -­‐     232  -­‐    Measured  fluorescence  background  from   -­‐decay    

0.1 nm!    

Doped  solid-­‐ n+  

Th4+

Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010)

Page 26: Thorium Spectroscopy

    -­‐15      electric  crystal  field  shifts  may  be  »  10-­‐15        (e.g.  contact  interaction  nucleus  /  e-­‐  cloud)                  

   

4  (tetragonal):    Vzz  =  5×1021  V/m2  

-­‐ !  use  cubic  crystal  symmetry  

Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010)    

 

-15

work at cryogenic temperature to freeze out lattice fluctuations

Page 27: Thorium Spectroscopy

Search  for  nuclear  resonance  in  229 +  

 -­‐    

Electron  Bridge  Processes  

Page 28: Thorium Spectroscopy

 

from  the  electron  shell  to  the  nucleus        Excitation  of  the  shell  in  a  2-­‐photon  process  

         Excitation  rate  may  be  strongly  enhanced  at    

                      +        

hyperfine  structure  

Page 29: Thorium Spectroscopy

 

nucleus  

electrons  

atomic resonance  line  at  402  nm  tunable  laser  to  search  for  nuclear  resonance  

N  E1    

         10  s-­‐1            laser  parameters    

Excitation  rate  as  a  function  of  nuclear  resonance    frequency  (elect.  levels  from  ab-­‐initio  calculations)    

-­‐photon  electron  bridge  excitation  rate  

105,  182501  (2010)  

Page 30: Thorium Spectroscopy

Laser spectroscopy of trapped Th+ ions at PTB

- Linear Paul trap for buffer gas cooled clouds of Th+ (N >105) - Laser ablation loading (N2-Laser, now Nd:YAG laser) - Fluorescence detection in several spectral channels

Page 31: Thorium Spectroscopy

Laser spectroscopy of trapped Th+ ions

- Laser excitation in Th+ leads to population of many metastable levels - These are quenched by collisions or emptied with repumper lasers

Decay channels for the 402 nm resonance line

Page 32: Thorium Spectroscopy

Th+ Level Scheme

search  range  only    

 

density  expected      

±1

402 nm

3 x 800 nm

Page 33: Thorium Spectroscopy

   Why  is  nuclear  laser  spectroscopy  difficult?  -­‐ -­‐229  

-­‐229  as  a  precise  optical  nuclear  clock  • Application search for

Page 34: Thorium Spectroscopy

Reinhold et al., PRL 96, 151101 (2006) Murphy et al., Mon. Not. R. Astron. Soc. 345, 609 (2003)

Equivalence Principle: fundamental constants need to be constant in time

Are fundamental constants really constant?

=

=

Page 35: Thorium Spectroscopy

1-16

117

yr10)2.30.0(ln

yr10)7.24.2(ln

tRyt

Dzuba et al. PRL 82 (1999)

Hg+ Al+/Hg+

Yb+

Present status:

Laboratory Tests

Sensitivity factor A of different atomic transitions to a potential drift of

lnln;lnlnln FA

tA

tRy

tf

ff

Page 36: Thorium Spectroscopy

Dzuba et al. PRL 82 (1999)

Laboratory Tests

Sensitivity factor A of different atomic transitions to a potential drift of

229Th A ~ 10,000 . . .

! lnln;lnlnln FA

tA

tRy

tf

ff

Page 37: Thorium Spectroscopy

Scaling of the 229Th transition frequency in terms of and quark masses: V. Flambaum et al., Phys. Rev. Lett. 97, 092502 (2006)

105 enhancement in sensitivity results from near perfect cancellation of O(MeV) contributions to nuclear level energies

Th-229: most sensitive probe in a search for

Solution: measure isomer shift ( <r²>) and get better estimate for change in Coulomb energy! J. C. Berengut et al., PRL 102, 210808 (2009)

But: it depends a lot on nuclear structure!

See for example: Hayes et al., Phys. Rev. C 78, 024311 (2008) (|A| 103) Litvinova et al., Phys. Rev. C 79, 064303 (2009) (|A| 4×104)

> 10 theory papers 2006 - 2009

Page 38: Thorium Spectroscopy

   locate  transition  at  160    10  nm  

 • evaluate clock systematics

To Do List for Thorium Trappers

Page 39: Thorium Spectroscopy

Piet Schmidt

Ekkehard Peik

T.E.M.

Optical Clock Groups at PTB:

Christian Tamm Uwe Sterr