the compost-bomb instability and the petmumn mathematics of climate seminar november 12, 2013 1 the...

Post on 07-Oct-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The Compost-Bomb Instability and the PETM

Jonathan Hahn

UMN Mathematics of Climate Seminar

November 12, 2013

1

The Paleocene-Eocene Thermal Maximum

2

The Paleocene-Eocene Thermal Maximum

3

Carbon Mass Balance

Mfinal ⇥ �13Cfinal = Minitial ⇥ �13Cinitial +Madded ⇥ �13Cadded

Mfinal = Minitial +Madded

CIE = �13Cfinal - �13Cinitial

Madded = -CIE ⇥ Minitial�13

Cfinal-�13

Cadded

�13Csample = (Rsample/Rstandard - 1)

Rsample = C13/C12

4

�13C of Carbon Sources

Source

Methane clathrates:

Wildfires:

Drying of inland seas:

Thermogenic methane:

Permafrost and peat:

�13C

-6%

-2.2%

-2.2%

-3%

-3%

5

Estimating the CIE

6

Mass of Carbon Added to the Atmosphere

7

Source of carbon unclear

Zeebe et. al.:

Panchuck et. al. and Pagani et. al.:

Wright & Schaller:

Most geologists:

must have been methane

definitely not methane

probably a comet

unlikely to be a comet

8

CIE time frame

This data suggests the onset happens in about 20,000 years

9

CIE time frame

Wright and Schaller say:

13 years

10

Peat and Permafrost

DeConto et. al. use GCM with orbital forcing

11

Compost-Bomb Instability

Luke & Cox:

The compost bomb: thermal instability in peatland soils

dC

dt= ⇧- Cr(T )

✏dT

dt= Cr(T )-

A(T - Ta)

CTTa

r(T ) = r0

e↵T

Vertically integrated soil carbon content (kg/m2)Soil temperatureAtmospheric TemperatureSoil respiration rate

12

Compost-Bomb Instability

dC

dt= ⇧- Cr(T )

✏dT

dt= Cr(T )-

A(T - Ta)

r(T ) = r0

e↵T

r0

= 0.01(yr-1); ↵ = ln(2.5)/10Pi = 1.055(kgm-2yr-1)� = 5.049 ⇤ 106 (Jyr-1m-2

degC-1)

A = 3.9 ⇤ 107(Jkg-1)µ = 2.5 ⇤ 106(Jm-2 degC-1)✏ = µ/A = .064

microbial respiration parameterslitter fall from plantssoil-to-air heat transfer coe�cientspecific heat from microbial respirationsoil heat capacity

13

Compost-Bomb Instability

Equilibrium analysis

0 = dCdt = ⇧- C eqr(T eq)

0 = dTdt = C eqr(T eq)- �

A(Teq - Ta)

C eq = ⇧/r(T eq)T eq = AC eqr(T eq)/�+ Ta

C eq = ⇧/r(T eq)T eq = A⇧/�+ Ta

14

Compost-Bomb Instability

Equilibrium analysis

0 = dCdt = ⇧- C eqr(T eq)

0 = dTdt = C eqr(T eq)- �

A(Teq - Ta)

C eq = ⇧/r(T eq)T eq = AC eqr(T eq)/�+ Ta

C eq = ⇧/r(T eq)T eq = A⇧/�+ Ta

14

Compost-Bomb Instability

Equilibrium analysis

0 = dCdt = ⇧- C eqr(T eq)

0 = dTdt = C eqr(T eq)- �

A(Teq - Ta)

C eq = ⇧/r(T eq)T eq = AC eqr(T eq)/�+ Ta

C eq = ⇧/r(T eq)T eq = A⇧/�+ Ta

14

Compost-Bomb Instability

15

Compost-Bomb Instability

J =

0

@- �

A✏ + C↵r(T)✏

r(T)✏

-C↵r(T ) -r(T )

1

A

det(J - I�) = �2 + �

✓�

A✏-

C↵r(T )

✏+ r(T )

◆+

A✏r(T )

Instability condition:�

A✏-

C eq↵r(T eq)

✏+ r(T eq) < 0

A✏-

⇧↵

✏+ r(T eq) < 0

Stable!

16

Compost-Bomb Instability

J =

0

@- �

A✏ + C↵r(T)✏

r(T)✏

-C↵r(T ) -r(T )

1

A

det(J - I�) = �2 + �

✓�

A✏-

C↵r(T )

✏+ r(T )

◆+

A✏r(T )

Instability condition:�

A✏-

C eq↵r(T eq)

✏+ r(T eq) < 0

A✏-

⇧↵

✏+ r(T eq) < 0

Stable!

16

Compost-Bomb Instability

J =

0

@- �

A✏ + C↵r(T)✏

r(T)✏

-C↵r(T ) -r(T )

1

A

det(J - I�) = �2 + �

✓�

A✏-

C↵r(T )

✏+ r(T )

◆+

A✏r(T )

Instability condition:�

A✏-

C eq↵r(T eq)

✏+ r(T eq) < 0

A✏-

⇧↵

✏+ r(T eq) < 0

Stable!

16

Compost-Bomb Instability

However, Luke & Cox claim there is instability if the decrease insoil carbon cannot keep up with the increase in soil temperature.

Assume C = C0

is constant (dCdt << dTdt ).

Then according to the previous condition, the system is unstable if:

A✏-

C0

↵r(T eq)

✏+ r(T eq) < 0

T eq > (1/↵) ln

✓-�/(r

0

A✏)

1- C0

↵/✏

17

Compost-Bomb Instability

Equilibrium for T are given by: T eq - AC0

r(T eq)/� = Ta

18

Canard Trajectories

Wieczorek et. al. examine the same system but including:

dTa

dt= v

In this system, a “canard explosion” occurs for v > vcritical .

Canards: trajectories which transition from small amplitude limitcycles to large ones with a small perturbation in a parameter.

19

Canard Trajectories

20

Canard Trajectories

21

Canard Trajectories

22

Canard Trajectories

23

Canard Trajectories

24

Canard Trajectories

25

Canard Trajectories

26

Canard Trajectories

27

Canard Trajectories

28

Canard Trajectories

29

Canard Trajectories

30

Canard Trajectories

31

Rate-induced tipping

32

Credits

McInerny & Wing: “The Paleocene-Eocene Thermal

Maximum: A Perturbation of Carbon Cycle, Climate, and

Biosphere with Implications for the Future”

Luke, C. M, & Cox, P.M.: “Soil carbon and climate change:

from the Jenkinson e↵ect to the compost-bomb instability”

Wieczorek et. al.: “Excitability in ramped systems: the

compost-bomb instability”

33

top related