the compost-bomb instability and the petmumn mathematics of climate seminar november 12, 2013 1 the...

37
The Compost-Bomb Instability and the PETM Jonathan Hahn UMN Mathematics of Climate Seminar November 12, 2013 1

Upload: others

Post on 07-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

The Compost-Bomb Instability and the PETM

Jonathan Hahn

UMN Mathematics of Climate Seminar

November 12, 2013

1

Page 2: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

The Paleocene-Eocene Thermal Maximum

2

Page 3: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

The Paleocene-Eocene Thermal Maximum

3

Page 4: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Carbon Mass Balance

Mfinal ⇥ �13Cfinal = Minitial ⇥ �13Cinitial +Madded ⇥ �13Cadded

Mfinal = Minitial +Madded

CIE = �13Cfinal - �13Cinitial

Madded = -CIE ⇥ Minitial�13

Cfinal-�13

Cadded

�13Csample = (Rsample/Rstandard - 1)

Rsample = C13/C12

4

Page 5: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

�13C of Carbon Sources

Source

Methane clathrates:

Wildfires:

Drying of inland seas:

Thermogenic methane:

Permafrost and peat:

�13C

-6%

-2.2%

-2.2%

-3%

-3%

5

Page 6: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Estimating the CIE

6

Page 7: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Mass of Carbon Added to the Atmosphere

7

Page 8: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Source of carbon unclear

Zeebe et. al.:

Panchuck et. al. and Pagani et. al.:

Wright & Schaller:

Most geologists:

must have been methane

definitely not methane

probably a comet

unlikely to be a comet

8

Page 9: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

CIE time frame

This data suggests the onset happens in about 20,000 years

9

Page 10: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

CIE time frame

Wright and Schaller say:

13 years

10

Page 11: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Peat and Permafrost

DeConto et. al. use GCM with orbital forcing

11

Page 12: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

Luke & Cox:

The compost bomb: thermal instability in peatland soils

dC

dt= ⇧- Cr(T )

✏dT

dt= Cr(T )-

A(T - Ta)

CTTa

r(T ) = r0

e↵T

Vertically integrated soil carbon content (kg/m2)Soil temperatureAtmospheric TemperatureSoil respiration rate

12

Page 13: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

dC

dt= ⇧- Cr(T )

✏dT

dt= Cr(T )-

A(T - Ta)

r(T ) = r0

e↵T

r0

= 0.01(yr-1); ↵ = ln(2.5)/10Pi = 1.055(kgm-2yr-1)� = 5.049 ⇤ 106 (Jyr-1m-2

degC-1)

A = 3.9 ⇤ 107(Jkg-1)µ = 2.5 ⇤ 106(Jm-2 degC-1)✏ = µ/A = .064

microbial respiration parameterslitter fall from plantssoil-to-air heat transfer coe�cientspecific heat from microbial respirationsoil heat capacity

13

Page 14: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

Equilibrium analysis

0 = dCdt = ⇧- C eqr(T eq)

0 = dTdt = C eqr(T eq)- �

A(Teq - Ta)

C eq = ⇧/r(T eq)T eq = AC eqr(T eq)/�+ Ta

C eq = ⇧/r(T eq)T eq = A⇧/�+ Ta

14

Page 15: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

Equilibrium analysis

0 = dCdt = ⇧- C eqr(T eq)

0 = dTdt = C eqr(T eq)- �

A(Teq - Ta)

C eq = ⇧/r(T eq)T eq = AC eqr(T eq)/�+ Ta

C eq = ⇧/r(T eq)T eq = A⇧/�+ Ta

14

Page 16: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

Equilibrium analysis

0 = dCdt = ⇧- C eqr(T eq)

0 = dTdt = C eqr(T eq)- �

A(Teq - Ta)

C eq = ⇧/r(T eq)T eq = AC eqr(T eq)/�+ Ta

C eq = ⇧/r(T eq)T eq = A⇧/�+ Ta

14

Page 17: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

15

Page 18: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

J =

0

@- �

A✏ + C↵r(T)✏

r(T)✏

-C↵r(T ) -r(T )

1

A

det(J - I�) = �2 + �

✓�

A✏-

C↵r(T )

✏+ r(T )

◆+

A✏r(T )

Instability condition:�

A✏-

C eq↵r(T eq)

✏+ r(T eq) < 0

A✏-

⇧↵

✏+ r(T eq) < 0

Stable!

16

Page 19: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

J =

0

@- �

A✏ + C↵r(T)✏

r(T)✏

-C↵r(T ) -r(T )

1

A

det(J - I�) = �2 + �

✓�

A✏-

C↵r(T )

✏+ r(T )

◆+

A✏r(T )

Instability condition:�

A✏-

C eq↵r(T eq)

✏+ r(T eq) < 0

A✏-

⇧↵

✏+ r(T eq) < 0

Stable!

16

Page 20: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

J =

0

@- �

A✏ + C↵r(T)✏

r(T)✏

-C↵r(T ) -r(T )

1

A

det(J - I�) = �2 + �

✓�

A✏-

C↵r(T )

✏+ r(T )

◆+

A✏r(T )

Instability condition:�

A✏-

C eq↵r(T eq)

✏+ r(T eq) < 0

A✏-

⇧↵

✏+ r(T eq) < 0

Stable!

16

Page 21: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

However, Luke & Cox claim there is instability if the decrease insoil carbon cannot keep up with the increase in soil temperature.

Assume C = C0

is constant (dCdt << dTdt ).

Then according to the previous condition, the system is unstable if:

A✏-

C0

↵r(T eq)

✏+ r(T eq) < 0

T eq > (1/↵) ln

✓-�/(r

0

A✏)

1- C0

↵/✏

17

Page 22: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Compost-Bomb Instability

Equilibrium for T are given by: T eq - AC0

r(T eq)/� = Ta

18

Page 23: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

Wieczorek et. al. examine the same system but including:

dTa

dt= v

In this system, a “canard explosion” occurs for v > vcritical .

Canards: trajectories which transition from small amplitude limitcycles to large ones with a small perturbation in a parameter.

19

Page 24: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

20

Page 25: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

21

Page 26: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

22

Page 27: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

23

Page 28: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

24

Page 29: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

25

Page 30: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

26

Page 31: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

27

Page 32: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

28

Page 33: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

29

Page 34: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

30

Page 35: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Canard Trajectories

31

Page 36: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Rate-induced tipping

32

Page 37: The Compost-Bomb Instability and the PETMUMN Mathematics of Climate Seminar November 12, 2013 1 The Paleocene-Eocene Thermal Maximum 2 The Paleocene-Eocene Thermal Maximum 3 Carbon

Credits

McInerny & Wing: “The Paleocene-Eocene Thermal

Maximum: A Perturbation of Carbon Cycle, Climate, and

Biosphere with Implications for the Future”

Luke, C. M, & Cox, P.M.: “Soil carbon and climate change:

from the Jenkinson e↵ect to the compost-bomb instability”

Wieczorek et. al.: “Excitability in ramped systems: the

compost-bomb instability”

33