switched-capacitor filters - extra...

Post on 07-Apr-2018

250 Views

Category:

Documents

6 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Willy Sansen 10-05 N171

Switched-capacitor filters

Willy Sansen

KULeuven, ESAT-MICASLeuven, Belgium

willy.sansen@esat.kuleuven.be

Willy Sansen 10-05 N172

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N173

Principle

φ1φ2

• Non overlapping clocks• Switches are MOSTs

CQ Q

φ1 φ2V1 V2

Iav = =

Iav

C(V1-V2)

Tc = 1/ fc

Qav

Tc Tc

Iav = (V1-V2)

R

R = = Tc

For C = 1 pF & fc = 100 kHz R = 10 MΩ

1

fcCC

I2 Iav

t

t

Willy Sansen 10-05 N174

Low-Pass Filter with R’s and C

+

Av0 =

f-3db =

Ratio’s of R: 0.5% accuracy

R1 R2

C

-

R1

R2

2πR2C1

f-3dB f

Av0

Av

1

-20 dB/dec

Absolute value of RC : 20 % accuracy

vIN vOUT

Willy Sansen 10-05 N175

Low-Pass Filter with switched C’s

+

High accuracy: only ratio’s of C: 0.2%Only capacitors to drive : low power !Tunable & easy to integrate !But : only for frequencies << fc

-1 2

1 2

C

C1

C2R1 R2

C

-

+

Av0 =

f-3db =

C2

C1

2πfc

CC2

vOUTvIN

vOUT

vIN

Willy Sansen 10-05 N176

Example of 4th-Order SC Low-Pass filter

LC proto-type

SC ladder filter

Willy Sansen 10-05 N177

4th-Order SC Low-Pass filter

Capacitors

SwitchesOpamps

Clock

Willy Sansen 10-05 N178

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N179

Capacitors: metal-n+ & Metal-poly

Carea ≈ 5 fF/µm2

Cp ≈ 1.2 fF/µm2

Carea / Cp ≈ 1/4• Voltage dependent• Rsub: noise

Carea ≈ 2 fF/µm2

Cp ≈ 1 fF/µm2

Carea / Cp ≈ 1/2

• Linear• Large parasitics: Multi-layer !

Willy Sansen 10-05 N1710

Capacitor Matching

Common centroide lay-out !

Constant Area / Perimeter !

Willy Sansen 10-05 N1711

Random Error (σ)

1%

σ

Log (C)

local vs global tox effects

0.1%

Willy Sansen 10-05 N1712

Capacitances in nanometer CMOS

vias• Digital technology, no MIM cap.• lateral metal-metal capacitance• 8 metal layers, 1.7 fF/μm2

• Good matching

• MIM capacitors• 5 metal layers, 0.35 fF/μm2

• Excellent matching

Aparicio, JSSC March 02, 384-393

Willy Sansen 10-05 N1713

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N1714

A MOST as a switch

1 2

W= 2 µm L = 0.7 µmKPn = 80 µA/V2

VT = 0.7 VVh = 3 V

02468101214161820

0 1 2 3

Input Signal

1 2

Ron =KPn (Vh-VT-Vsign)W

L

1

Willy Sansen 10-05 N1715

Double Switch or transmission gate

nMOST: Vin < VDD-VGS,n ≈ VDD - 0.7 VpMOST: Vin > VGS,p ≈ 0.7 VMinimum Vh = VDD : VDD-VGS,n = VGS,p => VDD > 1.4 V

Switch:

Φ1

Φ1

VinC

Φ1

Φ1

VinC

Willy Sansen 10-05 N1716

Double Switch

02468101214161820

0 1 2 3

Input Signal

RnmosRpmosRon

RpMOST RnMOST

Willy Sansen 10-05 N1717

Low Voltage SC : MOST-Switch

VDD0 VTpVDD-VTn

nMOSTpMOST

1.3 V

?

VDD-VGS

VDD0 VTp VDD-VTn

nMOSTpMOST

3 VgDS gDS

Willy Sansen 10-05 N1718

Low Voltage SC : MOST-Switch

0 1.0 2.0 3.0 4.0 5.0VIN

4.0 k

3.0 k

2.0 k

0 0.5 1.0 1.5 2.0VIN

60 k

40 k

20 k

0 k

VDD =5 V

VDD =1.8 V

Ron

Willy Sansen 10-05 N1719

Time constant of Ron

Vin

time

Vout

ε

ts

Vout = Vin (1-exp(- ))

ts = RC ln(1/ε)ts ≈ 7 RC for ε = 0.1 %

Speed if large C (low noise)large R (small switch)

1Vin VoutVin

RCtRonVout

C C

Willy Sansen 10-05 N1720

For W/L = 2 and VGS-VT ≈ 1 VRon ≈ 10 kΩFor C ≈ 1 pFFor ε ≈ 0.1% ts = 7 RC ≈ 70 nsTc = 140 ns fmax ≈ 7 MHz

Maximum frequency of operation

Due to only one switch

practical fmax : 1-10 MHz

φ1

Tmax = 1/fmax

ts

L Ron

Willy Sansen 10-05 N1721

For Cmin ≈ 0.25 pF (mismatch)∆Vc = 1% of 0.1 V or ∆Vc = 1 mV dt = Tc/2 with Tc = 1/fcmin

Minimum frequency of operation

φ1 φ1φ2 φ2

VC

t0

∆VC

Tc

Leakage i = CdVC

dti is 10 nA/cm2 at 25o

is 10 µA/cm2 at 125o

For 10x1 µm: 2 fA (25o)or 2 pA (125o)

fcmin =i

2 Cmin ∆Vc= 4 Hz or 4 kHz (125o)

Willy Sansen 10-05 N1722

Clock Feed-Through

Overlap Capacitors Covl ≈ W Covlo

W ↑ ⇒ R ↓ but Covl ↑

Example : W = 3µm L = 0.7µm Covlo = 0.5 fF/µm

⇒ Covl ≈ 1 fF

∆V: Q = Covl (Vh-Vl) ≈ 1fF. 3V ≈ 3fC

⇒ ∆V ≈ ≈ 3fC/1pF ≈ 3 mVQC

Covl

C

Willy Sansen 10-05 N1723

Charge redistribution

Inversion layer charge Qm ≈ CoxWL(Vh-Vsign-VT)

Ex. W = 3µm L = 0.7µm Cox = 1.6 fF/µm2

VT = 0.7V Vsign = 1.5V

⇒ Q ≈ 6 fC∆V: Half is stored in each cap⇒ ∆V ≈ Q/2C ≈ 3 fC/1pF ≈ 3 mV

Total: ∆V ≈ 10 mV/pF C ↑ ⇒ CD ↓ Speed ↓ Power ↑

Willy Sansen 10-05 N1724

Clock injection & Charge redistribution

If Covl,n = Covl,p

No Clock FT !

Problems: matchingWn = Wp ?

Φ

Φ

Φ

Φ

Dummy Switch

6/0.7

3/0.7

OK if Q is split equal 1/2

Problems: clock skewrise/fall timeimpedance

Willy Sansen 10-05 N1725

Quantitative Charge Redistribution

Ci/C

Ci >> C, B >>1 ∆Q 0

NO dummy

Ci << C, B >>1∆Q QDummy

Ci = C: ∆Q=Q/2Dummy

B<<1 : ∆Q=Q/2 Dummy

High Speed Clocks

Low Speed Clocks

Ref. Wegmann, Vittoz, JSSC Dec.87, 1091-1097

β = µCox.W/La = dV/dtVTe = effective VT (with bulk effect)

Willy Sansen 10-05 N1726

Layout considerations

Reduce Cox area Use metal to ‘shield’

clock lines

Parasitic C⇓

CFT

Willy Sansen 10-05 N1727

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N1728

Sampling analog signals

VoutVin

Φ1

Φ1

C

Vin

Vout

Willy Sansen 10-05 N1729

Spectra

Input signal vin

Sampled signal fc/2 >> fsignal

Sampled signal fc/2 < fsignalNyquist !

fs

fs fc

fs fc fc 3fc

f

f

f

fc/2

fs

|Vin|

|Vout|

|Vout|

Willy Sansen 10-05 N1730

Anti-Aliasing filter

fcfs ffc-fs

Willy Sansen 10-05 N1731

Anti-aliasing / Reconstruction

N-order filter:N

fsfc − fs[ ] =

−Attenuation2010 fc = fs.

Attenuation20.N10

Ex. Attenuation = 40 dB; fs = 10 kHz ; N = 1 fc = 1 MHz

Willy Sansen 10-05 N1732

Sampled Data Basics : z-transform

Analog System: s = jω

Sampled data: z-transforms1 delay is z-1

z = e = ejωTc j2πf

e = 1 + jωTc + jωTc (jωTc)2

2

VoutVin

11 + sRC

=

fc

R C

+ …… if ωTc << 1

Willy Sansen 10-05 N1733

SC-Integrator in phase 1

+-

RC

Vout(s) =−Vin(s)sRC

+-1 2

C

aC

timetntn-1/2tn-1

Φ1

Φ2Φ1 QaC1 = aC Vin(n-1/2)

QC1 = - C Vout (n-1)Vout(n-1/2) = Vout(n-1)

Willy Sansen 10-05 N1734

SC-Integrator in phase 2 : charge conservation

+-

RC

Vout(s) =−Vin(s)sRC

+-1 2

C

aC

timetntn-1/2tn-1

Φ1

Φ2 Φ2

- C Vout (n) = aC Vin (n-1/2) - C Vout (n-1)

QaC2 = 0QC2 = - C Vout (n)

QaC2 +QC2 = QaC1 +QC1

Willy Sansen 10-05 N1735

SC-Integrator : approximate transfer function

- C Vout (n) = aC Vin (n-1/2) - C Vout (n-1)

Vout (n-1) = z-1 Vout

C.Vout = z-1 C Vout - z-1/2 aC Vin

⇒VoutVin

≈ −a(1− jωTc/ 2)

jωTc≈ −

ajωTc

Integrator

RC = aTc

= - az-1/2

1 - z-1

Vout

Vinz-1 = e ≈ 1 - jωTc

-jωTc

Willy Sansen 10-05 N1736

Exact Transfer function

Euler’s relationship:

sin(x) =+ jxe − − jxe2 j

f/fc = 0.1error ≈ 0.1%

H(z) = -az-1/2

1 - z-1

H(e ) = -ae1 - e

jωTc-jωTc/2

-jωTc

H(e ) = -a

e - ejωTc

jωTc/2

jωTc

-jωTc/2

H(e ) = -ajωTc ωTc/2

sin(ωTc/2)

Willy Sansen 10-05 N1737

The sin(x)/x function

x

sin(x) ≈ x - + .. x3

3

sin(x) ≈ 1 - + ..x2

3

For x = 0.1sin(x)/x ≈ 1 - 0.003

For x = 0.05sin(x)/x ≈ 1 - 0.0008

≈ 1 - 0.001

Willy Sansen 10-05 N1738

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N1739

Stray Capacitances

+-1 2

C

aC

Stray Cap at input:Substrate couplingContinuous timePSRR very bad

Stray Cap at output:Cp is extra load

for opamp

Willy Sansen 10-05 N1740

Stray Capacitances

+-1 2

CaC

Cp ≈ 2.CjS.Area ≈ 20 fF

Gain =aC + 2Cp

C

error ≈2CpaC

≈ 5 −10%

Willy Sansen 10-05 N1741

Stray Insensitive SC integrator

+-1 2

C2 = CC1 = aC

12

Av =C1C2

= a

vIN+

-vOUT

Willy Sansen 10-05 N1742

Stray Insensitive SC integrator

+-

CaC

Av =C1C2

= a

vIN+

-vOUT

Φ1

Willy Sansen 10-05 N1743

Stray Insensitive SC integrator

+-

CaC

Av =C1C2

= a

vIN+

-vOUT

Φ2

Willy Sansen 10-05 N1744

Stray Insensitive Integrator during phase 1

+-1 2

CaC

12

Φ1 aC

Q = 0 no effectQaC = aC VinQcp = Cp Vin

Av =C1C2

τ =1afc

CpCp

Cp Cp

= a

Willy Sansen 10-05 N1745

Stray Insensitive Integrator during phase 2

+-1 2

CaC

12

Φ2 aC

Qcp is discharged

to gnd Virtual groundQcp remains 0Only QaC is transferred

CpCp

Cp Cp

+-

C

Willy Sansen 10-05 N1746

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N1747

Loss-less Integrators

-

1 2

C1

C2

+

H(z) =C1

C2

z-1

1 - z-1

12

2

1H(z) =

C1

C2

z-1/2

1 - z-1

H(z) = -C1

C2

z-1/2

1 - z-1

H(z) = -C1

C2

11 - z-1

-

1

2

C1

C2

+1

2

2

1

Willy Sansen 10-05 N1748

Low-pass filter of 1st order

-1 2

1 2

C1

C2+

Av =C1C2

BW =fc

vINvOUT

C

C2C

Damped because of R//C !

Willy Sansen 10-05 N1749

Damped integrators

Non-inverting damped integrator

Inverting Damped integrator

-

(c)

Willy Sansen 10-05 N1750

Offset compensation

-1

aC+2

21vIN

vOUTvos

1

+-

C

Av = a z-1/2

independent of vos

Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N1751

Offset compensation

-

aC

+vIN

vOUTvos+-

C

QaC1 = aC (vos - vIN(n-1/2))QC1 = C vos

-

aC

+vos+-

Φ1 Φ2

+

+

vOUT

Av = a z-1/2

QaC2 = aC vosQC2 = C (vos - vOUT(n))

QaC1 + QC1 = QaC2 + QC2

C

Willy Sansen 10-05 N1752

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters

Gregorian, Temes, Analog MOS Integrated Circuits for Signal Processing, Wiley, 1986

Laker, Sansen, Design of Analog Integrated Circuits and Systems, McGrawHill, 1994

Johns, Martin, Analog Integrated CircuitDesign, Wiley 1997

Willy Sansen 10-05 N1753

Capacitors

SwitchesOpamps

Clock

Clock freq 100 kHzCut-off 5 kHzPass ripple 0.25dBStop reject >45 dBPower 190µW (± 2.5V)S/N 75 dBHarm dist 0.25%Area 0.9 mm2

4th Order SC low-pass ladder filter

Willy Sansen 10-05 N1754

Biquadratic filter

Willy Sansen 10-05 N1755

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N1756

Opamp parameters

A0

1

|A|

fd f

Loop gain (1+T) ≈ T

GBW

Feedback factor α

Ac0 = 1/ α

T = A0 / Ac0 = α A0 Ac0

BW = α GBW

BW

GBW = gm

2π Ceff

α

Willy Sansen 10-05 N1757

Static error

Vout , t = ∞ = −Ao.Vstep1 +α.Ao

εS =Vstep /α −VoutVstep /α

=1−Ao

1+ Ao.α≈

1α .Ao

Ao >1

α.εSMinimum Gain

ε = 0.05%

A0 ≈ 1-10k≈ 60-80 dB

Willy Sansen 10-05 N1758

Dynamic error

εD = EXP(−α.gm.tSCL, ef

)

GBW >fc

π.αln(1εD)Minimum GBW:

GBW =gm2πCL, ef

εD = EXP(−α.2π.GBW.tS) tS =12 fc

GBW =1

α.2π .tSln(1εD) =

2 fc2π.α

ln(1εD)

ε = 0.05%

GBW ≈ 2-3*fc

Willy Sansen 10-05 N1759

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N1760

kT/C versus kTR noise

Narrow-band noise >> noise density : dvni2 = 4kT R df

kTC

Wide-band noise >> integrated noise : vni2 =

fc GBW

dvni2

vni2 =

kTC

GBW

f

fc/2

2fc 3fcfc2

Willy Sansen 10-05 N1761

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

Willy Sansen 10-05 N1762

Switched-current delay block

Ref. Zele JSSC Feb. 96, 157- 168

M1 M2

IBIB

Iout

1 : 1

IinSwitch closed : track VGS

Iout = IinClock

Switch open : hold VGSIout = Iin (∆Tc)

Iout = Iin z-1/2

Willy Sansen 10-05 N1763

Switched-current low-pass filter

Ref. Zele JSSC Feb. 96, 157- 168

M1 M2 IB

IBiout = Kif

1 : 1

if

if = if z-1 - iin z-1/2K z-1/2

1 - z-1

Clock1 Clock2

iin

ioutiin

=

1 : K

KIB

if

Willy Sansen 10-05 N1764

2nd-generation switched-current filter

A1z-1

1 - Bz-1io(z) = i1(z) - i2(z) -

A2z-1

1 - Bz-1

A3(1-z-1)

1 - Bz-1i3(z)

A1 = 1 + α4

α1

A2 = 1 + α4

α2

A3 = 1 + α4

α3

B = 1 + α4

1

Willy Sansen 10-05 N1765

Comparison SC - SI

SC SI

Signal : Voltage CurrentCharge on linear C Charge on MOST CGS

Q = C V Q = I tAccuracy : Capacitor ratio MOST area ratio

0.2 % 2 %Amps : Opamps Current mirrorsS/N+D 70 dB 50 dB

Willy Sansen 10-05 N1766

Switched-Capacitor Filters

• Introduction : principle• Technology:

• MOS capacitors• MOST switches

• SC Integrator• SC integrator : Exact transfer function• Stray insensitive integrator• Basic SC-integrator building blocks

• SC Filters : LC ladder / bi-quadratic section• Opamp requirements

• Charge transfer accuracy• Noise

• Switched-current filters McCreary, JSSC Dec 75, 371-379Gregorian, IEEE Proc. Aug 83, 941-986

top related