spatial resolution of non- invasive beam profile monitorbased on optical diffraction radiation a.p....

Post on 17-Jan-2016

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

SPATIAL RESOLUTION OF NON-INVASIVE BEAM PROFILE

MONITORBASED ON OPTICAL DIFFRACTION RADIATION

A.P. Potylitsyn

Tomsk Polytechnic University,

634050, pr. Lenina 2, Tomsk, Russia

e-mail: pap@interact.phtd.tpu.edu.ru

Advanced Beam Dynamicsc WorkshopNanobeam - 2008

May 25-30, 2008, Budker INP, Novosibirsk, Russia

Diffraction radiation approach

Impact parameter, h, – the shortest distance between the target and the particle trajectory

2

h - observation wavelength

FDRBDR

e

h

Diffraction radiation (DR) appears when a charged particle moves in the vicinity of a medium

Approach for the beam size measurements

e

0y

O D R

Assume a Gaussian beam profile

2y

2

xx

y

yx 2

aaexp

2

1,aG

2sina2

cosa4

cosh8

exp

sina2exp

4

R

dd

Wd

y02

x2x2

x2

2

2y

2

2y

2x

2

2x

20

2x

2

2x

2

2

xslitx

2

2sina2

cosa4

cosh8

exp

sina2exp

4

R

dd

Wd

y02

x2x2

x2

2

2y

2

2y

2x

2

2x

20

2

2

yslity

2

, y is the electron beam size and is its offset with respect to the slit center

xa

2x

2

yarctan

y

-6 -4 -2 0 2 4 6

0

400

800

1200

1600 b

Imin

Imax

(m)0 5 10 15 20

I min

/ I m

ax

0.00

0.02

0.04

0.06

0.08c

300nm

500nm

700nm

0

200

400

600

800

-4-2

02

4

-4-2

02In

ten

sity

(ar

b. u

nit

s)

y

x

a Beam size effect

Projection

Projected vertical polarization component

2

2

xyyx

2

yy

x

x

ddd

),,(Wd),(S

= 2500

y=0

y=30m

x – x detector angular acceptance

x

Inte

nsi

ty (

arb

. u

nit

s)

screen monitor

screen monito r

alignment laser

mirror chamber

target chamber

rotatable mirror

CCD

CCD

ICCD

beam line

to beam dump

bendingmagnet

Air Cherenkov counter

collimator

reflecting mirror

beam linealignment laserODR, OTR

lead shielding

reflecting mirror

PMT

polarizeroptical fi lter

mask chamber

bending magnetSR source

gamma rays

y-10 -5 0 5 10

Inte

nsi

ty d

evid

ed b

y O

TR

0.0

0.2

0.4

0.6

0.8

1.0

OTR

ODR

Measurements of the ODR projected vertical polarization component with PMT

y-10 -5 0 5 10

Inte

nsi

ty d

evid

ed b

y O

TR

0.0

0.2

0.4

0.6

0.8

1.0 OTR

ODR

Experiment

Theory

Optical filter 55020nm

%58I

ImaxOTR

maxODR %62

I

ImaxOTR

maxODR

Angular acceptance and beam size effect in ODR experiment

Beam size (MW2X, m)0 10 20 30 40 50

Bea

m s

ize

valu

e (

m)

0

10

20

30

40

50

MW2XMW3XODR

y

0.0 0.1 0.2 0.3 0.4

Bea

m s

ize

valu

e (

m)

0

5

10

15

20

25

30

MW2X

MW3X

Optical transition radiation (OTR) beam size monitor

OTR monitor ODR monitor

Pre-wave zone2a

We shall introduce Cartesian coordinates on the target, lens and detector using T, L, D indices and use dimensionless variables

2 2, , .T T L L D D

T T L L D D

x X x X x X

y Y y Y y Ya

2 22 21

2 2

2

,

,

exp exp4

aexp , R= , M is magnification

Dx D D

T T L LDy D D

T TT T T

T L T LT T T

D DL L

E x yconst dx dy dx dy

E x y

K x yx x yi x x y y i

y Rx y

x yi x y

M M

Model

For a rectangular lens with aperture , m L m m L mx x x y y y

One may obtain

.,,,,

sinsin

4

expexp

mDTmDTx

DT

DTm

DT

DTm

DTD

DTL

y

yL

x

xL

yyyGxxxGM

yy

M

yyy

M

xx

M

xxx

M

yyiy

M

xxixdydx

m

m

m

m

For M=1 fields on the detector surface may be written:

2 21

2 2

2 2

( , )

( , )

exp , , , , .4

DT T

x D D TT TD

y D D T T T

T Tx T D m T D m

K x yE x y xconst dx dy

E x y y x y

x yi G x x x G y y y

R

Intensity on the detector surface

2 2D Dx yI const E E

2 2m mx y

a) Normalized shape of OTR source image on the detector plane for lens aperture =100 (left curve) and = 50 (right curve) in wave zone (R = 1);

b) OTR source image in «pre-wave zone» (R = 0.001) for the same conditions and with the same normalizing factors;

c) OTR source image at the fixed lens diameter for different distances between the target and the lens (R = 0.01, = 250 - right curve; R = 0.1, = 25 - left).

OTR image from a single electron(point spread function, PSF)

mrmr

mrmr

Spatial resolution of OTR monitor is defined by the distribution maximum position

max0

3 3D

m

rr

max0 - lens acceptanceLR

a

Dimension variable: max

0

1

2 2Dr

maxDr

maxDr

max max

max

,tx x x

h y y

• For optical diffraction radiation (ODR) there are 2 dimension parameters – wavelength and impact parameter h

• Which one is defined a spatial resolution?

• To obtain an intensity of ODR on detector surface one have to integrate ODR field on the target surface:

A Very High Resolution Optical Transition Radiation Beam Profile Monitor // Ross M. et al. SLAC-PUB-9280 July 2002

10FWHM 5.8FWHM

Near-field imaging of optical diffraction radiation generated by a 7-GeV electron beam

A. H. Lumpkin, W. J. Berg, N. S. Sereno, D.W. Rule,* and C.-Y. YaoPHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10,

022802 (2007)

E = 7 GeV = 0.8 mh = 1.25 mm

1375 200x ym m

0.2 0.15 0.1 0.05

1000

2000

3000

4000

5000

6000

7000

EyD2

m m, 100x y

m m, 50x y

m m, 25x y

y D

8Lens aperture

I

Lens aperture

PSF for ODR case (perpendicular to target edge)

h = 0.1

x = 0D

-h – ODR target edge image

arb.

uni

ts

m m, 25x y

m m, 50x y

Points - lens aperture

Lens aperture

PSF for ODR case (parallel to target edge)

Dx0.15 0.1 0.05 0.05 0.1 0.15

1000

2000

3000

4000

5000Ey

D2

0.17dy

I , arb. units

Dx0.2 0.1 0.1 0.2

500

1000

1500

2000

2500

EyD2

0.14dy

I , arb. units

h = 0.1

h = 0.1

0.2 0.1 0.1 0.2

0.2

0.4

0.6

0.8

1 2 2D Dx yI E E

2DxE

2DyE

Dx

y-PSF

x-PSF

0.05

0.06D

h

y

To simplify all calculations we shall use the approximation ,m mx y

PSF for both ODR polarized components

2

0

2

2

1.5

1

0.5

0

0

0.5

1

1.5

2

2

0

2

2

0

2

2

1.5

1

0.5

0

0

0.2

0.4

2

0

2

Significant broadening of deep (for ) and peak (for ) is observed with increasing of impact parameter h

2DxE2D

yEDx

DyDx

Dy

0.5h 2DxE

2DyE

2D PSF for ODR case

0.4 0.2 0.2 0.4xD

0.2

0.4

0.6

0.8

1Ey

D2

0.05h 0.1h

0.2h

, arb. units

FWHM

0.6 0.4 0.2 0.2 0.4 0.6xD

0.2

0.4

0.6

0.8

1Ex

D2 , arb. units

0.05h

0.1h

0.2h

Characteristics of y-PSF and x-PSF

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

FWHMFWHM

FWHM

h

y

Almost linear dependence of FWHM and on impact parameter

Dependence on impact parameter

0.750.50.25 0.25 0.5 0.75xD

2468

101214

EyD2 , arb. units

For small offset relative to optical axes distributions remain the same

PSF dependence on particle offset

0.750.50.25 0.25 0.5 0.75xD

0.5

1

1.5

2

2.5

ExD2, arb. units

0.2 0.1 0.1 0.2

xD

0.2

0.4

0.6

0.8

1I

2DxE

2DyE

800

13700

100

50x

nm

h

800

13700

100

20x

nm

h

0.2 0.1 0.1 0.2xD

0.2

0.4

0.6

0.8

1I

2DxE

2DyE

“Smoothing” of PSF due to beam size

100 200 300 400 500XD, m

0.2

0.4

0.6

0.8

1I

50 m

20 m

, arb. units

Dependence of smoothed PSF on beam size

Developed model E = 7 GeV = 0.8 h = 100 m

Near-field imaging of optical diffraction radiation generated by a 7-GeV electron beam

A. H. Lumpkin, W. J. Berg, N. S. Sereno, D.W. Rule,* and C.-Y. Yao//

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10, 022802 (2007)

400 200 200 400

XD, m

0.2

0.4

0.6

0.8

1

ExD2

50 m

20 m

, arb. units

Smoothed x-PSF for different beam sizes

600 400 200 200 400 600

xD

0.2

0.4

0.6

0.8

1

ExD2 , arb. units

50 m

20 m

80 m

Smoothed of deep for different

h = 100 m = const

20 40 60 80 100 ,

0.2

0.4

0.6

0.8

R

Ratio as a tool for beam size measurements

max min

max min

x x

x x

I IR

I I

800

13700

100

nm

h

600 400 200 200 400 600xD

0.2

0.4

0.6

0.8

1

ExD2

50h

100h

, arb. units

200h

Dependence of x-component image on impact parameter

50 const 800

13700

nm

ODR imaging of a slit

PSF – x, PSF-y for slit

Conclusion• 1.The model developed allows to obtain 2D- and 1D-distributions

of an ODR intensity on detector as well as distributions of both polarized components for beam with finite transversal sizes.

• 2.The ODR distribution from single electron (point spread function, PSF) is defined by impact parameter h only (if h>> ).

• 3.Polorized components of PSF may provide higher spatial sensitivity in contrast with total PSF.

• 4.The deep shape of polarized ODR x-component depends on a transverse beam size along target edge.

• 5.Measurements of deep ”smoothing” allows to achieve a spatial resolution (i.e. for )

• 6.For impact parameter there may be lost ~ 60% of a total ODR intensity measuring ODR X-component only.

50 H m0.2x H 0.1 / 2h 10 x m

Thanks for yourattention!

top related