rapid prototyped nano composite magnetic scaffolds for … · 2019-11-25 · rapid prototyped nano...

Post on 09-Aug-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Rapid prototyped nano composite

magnetic scaffolds for osteochondral

tissue regeneration

Roberto De Santis

IPCB-CNR Institute of Polymers, Composites and Biomaterials,

National Research Council of Italy

V.le J.F. Kennedy, 54 Naples 80141, Italy

Additive Manufacturing

- opportunities in Tissue Repair & Regeneration

Nano-composite magnetic scaffolds

- Iron Oxide & Iron doped Hydroxyapatite (MNPs)

- PCL/MNPs PEG/MNPs nanocomposites

- Properties of superparamagnetic scaffolds

Features of superparamagnetic scaffolds used in conjunction with

magnetically labeled cells

RP of nanocomposite scaffolds for osteochondral tissue regeneration

Outlines

Ink-jet

FDM

STL

Spraybase

Indirect Application

of AM (molding)

Additive Manufacturing opportunities in the

MedTech industry (non-implantable devices)

Direct Application of

AM

MSC-loaded collagen-LMW HA-4S-StarPEG sIPN

Combination of 3D Photo-Printing and 3D Fiber Deposition

techniques

Combination of 3D Fiber DepositionTechnique and Electrospinning

cm mm

µm nm3D Bioplotting in conjunction with

solvent casting/phase inversion

Additive Manufacturing opportunities in the

MedTech industry (implantable devices)

Rationale for manufacturing magnetic scaffolds

on demand

drug delivery

smart cell

seeding

Iron Oxide & Iron Doped Hydroxyapatite MNPs

Fe3O4@PAA

FeHA

Superparamagnetic nanoparticles

PCL/MNPs

90/10 to 50/50 w/w

Poly(ethylene glycol) diacrylate (PEGDA)

Lucirin-TPO photoinitiator

Stirring & SonicationPCL/MNPs & PEG/MNPs

solutions

Moulding & Solvent CastingTeflon Mould

2D nanocompositespellets

Poly(ε-caprolactone) (PCL)

3D Fiber Deposition

Stereolithography

PCL/MNPs & PEG/MNPs nanocomposites

PCL/MNPs nanocomposites

P Ca Fe

PCL/FeHa 80/20

fiber

3D scaffold

Optical Microscopy

a) b) c)

µ-CTFe3O4

filtering

PCL/MNPs imaging

Small-Punch Test (ASTM 2183)

Effects of MNPs amount

-1.0 -0.5 0.0 0.5 1.0

-1

0

1 90/10

80/20

70/30

60/40

50/50

em

u.g

-1

H (T)

PCL/FeHA

T=300K

0 100 2000

3

6

9

90/10

80/20

70/30

60/40

50/50

T

(C

)

t (s)

PLC /FeHA %(w/w)

10 20 30 40 500,0

0,1

0,2

0,3

dT

/dt

(C/s

)

%FeHA (PLC+FeHA)

Effects of MNPs amount

Static Magnetic Field

Dynamic Magnetic Field

-1,0 -0,5 0,0 0,5 1,0-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

10 layers

LP_A

LP_B

SP_A

SP_B

D=4A

D=4B

PCL/Fe3O

4

80 / 20

M (

em

u/g

)

H (T)

0 60 1200

10

20

T

(°C

)

t (s)

PCL-Fe3O

4 80/20

small pores 10 layers; m=70 (mg)

large pores; m=57,3 (mg)

small pores; m=47,2 (mg)

2 specimens; m=41,9 (mg)

Core Shell MNPPAA@MNP

BSDfunctionalisation

BSDMolecular Collapsing

42 oC

BoundVEGF

ReleasedVEGF

Thermoresponsive dendrimers

Magnetic force

On demand drug delivery opportunities

Static Magnetic Field Dynamic Magnetic Field

PCL/MNPs customized scaffolds for cell assay

(A I) (A II) (A III)

(B I) (B II) (B III)

(C I) (C II) (C III)

(D I) (D II) (D III)

PCL

PCL/MNPs

90/10

PCL/MNPs

80/20

PCL/MNPs

70/30

7 days 14 days 21 days

% R

ed

uc

tio

n A

lam

ar

Blu

eA

LP

Ac

tivit

y (

ng

AL

P/n

g D

NA

)

Time (days)

hMSCs

Gloria A, et al. J R Soc Interf 2013;10: 20120833.

PCL/MNPs nanocomposites: in vitro assay

Materials Contact Angle, θ (deg)

PCL 81.4 ± 4.4

PCL/MNPs 90/10 75.7 ± 4.6

PCL/MNPs 80/20 74.8 ± 2.6

PCL/MNPs 70/30 64.9 ± 8.2

TEM

Imaging

Contact

Angle

MNPs provide a nanostructured topography &

increase PCL hydrophilicity

Russo T, et al. Procedia Eng 2013

PCL/MNPs nanocomposites: contact angle

De Santis R, et al. J. of Biomedical Nanotechnology 2015;11:1236-1246

Cell growth was 2.2-fold greater than that

without the application of a magnetic field.

hMSC loading was 36% higher than seeding

without a magnetic field.

MF

magnetic labeled hMSC

Effect of a static magnetic field

HUVEChMSC

Effect of a static magnetic field

V. Goronov et al, submitted to Journal of Tissue Engineering 2017

Sinusoidal magnetic field

f =70Hz

A=25-30 mT

Stimulation cycle

18 min. + 54 min. relax

Daily stimulation

6 h/day

hMSC

T Russo et al, Bioactive Materials 2017

Effect of a dynamic magnetic field

Hystological investigation at 4 weeks post-

implantation showed mineralized tissue

regeneration around and into the scaffold

In vivo behaviour of magnetic scaffolds

implanted into rabbit femur

PCL/MNPs scaffolds: in vivo behaviour

De Santis R, et al. J. of Biomedical Nanotechnology 2015;11:1236-1246

Stereolithography

Advantage: stratification thickness

Drawback: amount of inorganic particles

FDM

Advantage: amount of inorganic particles

Drawback: stratification thickness

Osteochondral

tissue

Rational for combining FDM & Stereolithography

Scaffolds for osteochondral tissue regeneration

Tissue Engineering

Scaffolds for osteochondral tissue regeneration

Thank you for the attention

Acknowledgements

POR Timing

Nanomax N-CHEM Progetto Bandiera

MAGISTER FP7 NMP3-LA-2008-214685

V.Alek Dediu

Anna Tampieri

Jose Rivas

Maurilio Marcacci

Vitaly Goranov

Alessandro Russo

top related