optical code design for multi-wavelength-ooc optical cdma system claire goursaud mikaël morelle

Post on 14-Jan-2016

44 Views

Category:

Documents

6 Downloads

Preview:

Click to see full reader

DESCRIPTION

Optical Code Design for Multi-Wavelength-OOC Optical CDMA system Claire GOURSAUD Mikaël MORELLE Anne JULIEN-VERGONJANNE Christelle AUPETIT-BERTHELEMOT Jean-Pierre CANCES Jean-Michel DUMAS Philippe GUIGNARD. XLIM Dpt-C²S² UMR CNRS 6172 ENSIL - University of LIMOGES FRANCE. - PowerPoint PPT Presentation

TRANSCRIPT

1

Apr 21, 2023

Optical Code Design for Optical Code Design for Multi-Wavelength-OOC Multi-Wavelength-OOC Optical CDMA systemOptical CDMA system

Claire GOURSAUD

Mikaël MORELLEAnne JULIEN-VERGONJANNE

Christelle AUPETIT-BERTHELEMOTJean-Pierre CANCESJean-Michel DUMASPhilippe GUIGNARD

XLIM Dpt-C²S² UMR CNRS 6172ENSIL - University of LIMOGES

FRANCE

goursaud@ensil.unilim.fr

2

Apr 21, 2023

MotivationsMotivations

Optical CDMA: Optical Code Division Multiple Access

Spread Spectrum technique

Inspired from radio communications (mobile phone …)

Multiple Access method: users one common resource

Allocation to each user a specific code

3

Apr 21, 2023

MotivationsMotivations

– D=155Mbit/s up to 1 Gbit/s per user– Passive Optical Networks 30 users– BER (Bit Error Rate) < 10-9

Possible solution : O-CDMA

Alternative to TDMA and WDMA techniques

4

Apr 21, 2023

MotivationsMotivations

O-CDMA

Coherent Incoherent

All optical system

Partially optical system

Unipolar codes (1D or 2D)

5

Apr 21, 2023

MotivationsMotivations

For low cost : electronic devices

Data

DemuxCDMA

Decoding

Mux

Electrical part –Reception

Electrical part – Emission Optical part

(laser)

CDMAcoding

6

Apr 21, 2023

electronic devices:electronic devices:

Limited bandwidth B Short code length F (for high data rate D)

Performances degraded due to

MotivationsMotivations

•MAI (Multiple Access Interference)•Beat noise•Thermal noise

7

Apr 21, 2023

OutlineOutline

• 2D-OCDMA system– 2 Dimensional coding method– 2D DS-OCDMA

• Conventional Correlation Receiver (CCR)– Structure– Performance analysis

• Parallel Interference Cancellation receiver (PIC)– Structure– Performance analysis

• Design of 2D codes

8

Apr 21, 2023

OutlineOutline

• 2D-OCDMA system– 2 Dimensional coding method– 2D DS-OCDMA

• Conventional Correlation Receiver (CCR)– Structure– Performance analysis

• Parallel Interference Cancellation receiver (PIC)– Structure– Performance analysis

• Design of 2D codes

9

Apr 21, 2023

2 Dimensional coding method2 Dimensional coding method

• MWOOC : Multi-Wavelength Optical Orthogonal Codes

• (L,F,W,λa,λc)– L : number of wavelengths– F : code length– W : code weight

– λa : auto correlation value

– λc : cross correlation value

Wavelength interference L

t

D F(L,F) low

10

Apr 21, 2023

2 Dimensional coding method2 Dimensional coding method

New Construction MWOOC (LxF,W,1,1)

- Any value of L : W L F- Any value of W

LLmin min = W : MWOOC (= W : MWOOC (LxF,W=L,1,1) )

High flexibility

11S-S.Lee and S-W.Seo, “New construction of Multiwavelength Optical Orthogonal Codes”, IEEE Trans. on comm., vol. 50, n°12, pp. 2003-2008, dec. 2002.

– 11MWOOC(LxF,W=λc+2,1, λc) : impose W=3

10G.C.Yang, W.C.Kwong, “Performance Comparison of Multiwavelength CDMA and WDMA + CDMA for Fiber-Optic Networks”, IEEE Trans. on comm., vol.45, n°11, pp. 1426-1434, nov. 1997.

– 10MWOOC (FxF,W,1,1) : impose L=F

11

Apr 21, 2023

2 Dimensional coding method2 Dimensional coding method

1D OOC code

Fmin max( W(W-1)+1, 30 – L)30 users

[a0, a1, …, aw-1] : an OOC(F, W=L, 1, 1) position vectorF : Prime Number

{ [ i, j*ai ] }{ [ i, a0 ], [ i, a1 ], …, [ i, aw-1 ] }With i [0, L-1], j [0, F-1]

Cardinality : NMWOOC = F + L

)1(

1WWFNooc

F Code matrices L Code matrices

12

Apr 21, 2023

Example: MWOOC(5x23,5,1,1)

OOC(23,5,1,1): (0, 1, 3, 8, 14){ [ 0, j*0 ] ; [ 1, j*1 ] ; [ 2, j*3 ] ;[ 3, j*8 ] ; [ 4, j*14 ] } j [0, 22]{ [ i, 0] ; [ i, 1] ; [ i, 3] ;[ i, 8] ; [i, 14] } i [0, 4],

NMWOOC(5x23,5,1,1) = 28

2 Dimensional coding method2 Dimensional coding method

j=3

i=211111 11111

t

t

1

1

1

1

1

1

1

1

1

1

13

Apr 21, 2023

00...01

10...00

...............

00...10

01...00

...

1,

1,1

1,2

1,1

1,

FL

FL

F

F

FL

d

d

d

d

C

bi1(t){0,1}

NFLC ,

biN(t)

2 Dimensional Emission scheme2 Dimensional Emission scheme

74...31

31...06

...............

18...27

63...41

Electrical part Optical part

λL

Mul

tiW

avel

engt

h la

ser

rL,F(t)

r1,F(t)

WavelengthMUX

RL,F(t)λ1

DS-OCDMA : Direct Sequence OCDMA

14

Apr 21, 2023

OutlineOutline

• 2D-OCDMA system– 2 Dimensional coding method– 2D DS-OCDMA

• Conventional Correlation Receiver (CCR)– Structure– Performance analysis

• Parallel Interference Cancellation receiver (PIC)– Structure– Performance analysis

• Design of 2D codes

15

Apr 21, 2023

Conventional Correlation Receiver Conventional Correlation Receiver (CCR)(CCR)

RL,F(t)Wavelength

DEMUX

Optical to Electrical Converter (OEC)

r1,F(t)

rL,F(t)O / E

O / E 74...31

tbi1ˆ

00...011, FLd

01...001,1 Fd

63...41

Tb

0

CCR #1

S

Tb

0

Errors occur only when = 0 tbi1

16

Apr 21, 2023

iNiN

SiECCR LF

W

LF

W

i

NP

1221

21

2

1

2

1

Conventional Correlation Receiver Conventional Correlation Receiver (CCR)(CCR)

17

Apr 21, 2023

OutlineOutline

• 2D-OCDMA system– 2 Dimensional coding method– 2D DS-OCDMA

• Conventional Correlation Receiver (CCR)– Structure– Performance analysis

• Parallel Interference Cancellation receiver (PIC)– Structure– Performance analysis

• Design of 2D codes

18

Apr 21, 2023

Parallel Interference CancellationParallel Interference Cancellation (PIC) Receiver (PIC) Receiver

)1(ˆib

CCR #1RL,F(t)

CCR # 2

CCR # i

CCR # N

-

+

2,FLC

)2(ˆib

)(ˆ kib

)(ˆ Nib

kFLC ,

NFLC ,

Errors occur only when = 1 tbi1

19

Apr 21, 2023

Parallel Interference Cancellation Parallel Interference Cancellation (PIC) Receiver(PIC) Receiver

1

1

1

1

111

1

1

2

2122

1

1 )1()(2

1 N

SN

NN

SWN

NNNI

NI

NNN

NN

N

EPIC

T F

PPCCP

nNnN

Sn

nNI LF

W

LF

WC

F

WP

T

11

1

2

1

221..

C.Goursaud, et al., “Improvement of Parallel Interference Cancellation technique with hard limiter for DS-CDMA systems”, IEEE GLOBECOM 2005, St-Louis, MO, USA, 28 Nov – 2 Dec, 2005. Session Photonic Technologies PT06.

20

Apr 21, 2023

OutlineOutline

• 2D-OCDMA system– 2 Dimensional coding method– 2D DS-OCDMA

• Conventional Correlation Receiver (CCR)– Structure– Performance analysis

• Parallel Interference Cancellation receiver (PIC)– Structure– Performance analysis

• Design of 2D codes

21

Apr 21, 2023

CCR: MWOOC(12x137,12,1,1)

PIC: MWOOC(6x43,6,1,1)

2D code design2D code design

B = F.D = 21 GHz

B = F.D = 6.5 GHz

D = 155 Mbit/s

22

Apr 21, 2023

2D code design2D code design

SNR [15, 25] dB: Noise dominates

SNR [25, 30] dB: MAI dominates

SNR [30, 40] dB :

CCR(12x137,12) has better performancedue to the high weight

PIC(6x43,6) has better performancedue to the PIC efficiency to remove MAI

Performance in the noiseless case

BER = 10-9: CCR SNRmin= 30 dB

PIC SNRmin= 28 dB F

L = W

SNR

MWOOC + PIC:

AWGN noise perturbation

23

Apr 21, 2023

ConclusionConclusion

New construction of Multi-Wavelength Optical Orthogonal Code

High flexibility

Short temporal code length

Minimal number of wavelength equal to the weight

Optimal Code Design

without noise

SNR require with

AWGN

Conventional Correlation Receiver MWOOC(12x137,12,1,1) 30 dB

Parallel Interference Cancellation receiver MWOOC(6x43,6,1,1) 28 dB

BER 10-9 N = 30 D 155 Mbit/s

24

Apr 21, 2023

Thank you for your attentionThank you for your attention

top related