november, 28-29, 2008 p.1 a linkage of trefftz method and method of fundamental solutions for...

Post on 15-Jan-2016

226 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

November, 28-29, 2008 p.1

A linkage of Trefftz method and method of fundamental solutions for annular Green’s

functions using addition theorem

Shiang-Chih ShiehAuthors: Shiang-Chih Shieh, Ying-Te Lee, Shang-Ru Yu and Je

ng-Tzong Chen Department of Harbor and River Engineering,

National Taiwan Ocean UniversityNov.28, 2008

The 32nd Conference on Theoretical and Applied Mechanics

November, 28-29, 2008 p.2

Outline

Introduction

Problem statements

Present method MFS (image method) Trefftz method

Equivalence of Trefftz method and MFS

Numerical examples

Conclusions

November, 28-29, 2008 p.3

Trefftz method

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

1( )

TN

j jj

u x c

j is the jth T-complete function

ln , cos sinm mm and m

exterior problem:

November, 28-29, 2008 p.4

MFS

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

1( ) ( , )

MN

j jj

u x w U x s

( , ) ln , ,jU x s r r x s j N

Interior problem

exterior problem

November, 28-29, 2008 p.5

Trefftz method and MFS

Method Trefftz method MFS

Definition

Figure caption

Base , (T-complete function) , r=|x-s|

G. E.

Match B. C. Determine cj Determine wj

( , ) lnU x s r

1( ) ( , )

N

j jj

u x w U x s

D

u(x)

~x

s

Du(x)

~x

r

~s

is the number of complete functions TN

MN is the number of source points in the MFS

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

1( )

N

j jj

u x c

j

November, 28-29, 2008 p.6

Optimal source location

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

MFS (special case)Image method

Conventional MFS Alves CJS & Antunes PRS

Not good Good

November, 28-29, 2008 p.7

Problem statements

a

b

Governing equation :

BCs:

1. fixed-fixed boundary2. fixed-free boundary3. free-fixed boundary

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.8

Present method- MFS (Image method)

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

……

November, 28-29, 2008 p.9

b

a

MFS-Image group

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

1

1

)(cos)(1

ln

)(cos)(1

ln

),(

m

m

m

m

mRm

R

mR

mxU

'

R

aR

R

a

R

R

a

2

''

'

R

bR

b

R

R

b 2

''

November, 28-29, 2008 p.10

MFS-Image group

00

0

0 0 0

1 0

0

01

0 0

1ln ( ) c

1ln ( ) c

( , )

(os ( )

,

os (

),

),m

m

m

m

aR m

s R

U s

Rb m b

a

Rb

m R

m

Rx

1 11 1

2

0

1 11

1 1 1

1

1

1 0

1

1ln ( ) cos (

1ln ( ) cos (

(

( ,

)

)

)

, )

m

m

m

m

aR

b

m

s

R mm R

R b bR

b R R

m R

R

U s x

22

1

2 2 2

2

22

1

2

22

0 0

1ln ( ) cos (

1ln ( ) cos

( ,

(

)

( , ))

)

m

m

m

m

Ra

R

m

s

b mm

m a

a R aR

R a R

U x b

R

s

44

1

2 2

44 4 02

1 1

4 4 4

44

1

4

( , )

1ln (

1ln ( ) cos

) co

(

s )

)

(( , )

m

m

m

m

Ra m

m a

a R a aR R R

R a R b

s R

Rb m

m bU s x

3 31 3

2 2

23 3 02

3 3 3

3

3 31 3

3 2

( , )

( , )1

ln ( ) cos (

1ln ( ) ( )

)

cos

m

m

m

m

bR m

m R

R b b bR R R

s R

U s xa

R mm R

b R R a

2 2 2 2 21

1 5 4 32 2

0 0 0

2 2 2 2 21

2 6 4 22 2

0 0 0

2 2 2 2 210 0 0

3 7 4 12 2 2 2 2

2 2 2 2 210 0 0

4 8 42 2 2 2 2

, ........ ( )

, ....... ( )

, ... ( )

, ... ( )

i

i

i

i

i

i

i

i

b b b b bR R R

R R a R a

a a a a aR R R

R R b R b

b R b R b b R bR R R

a a a a aa R a R a a R a

R R Rb b b b b

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.11

Analytical derivation

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.12

Numerical solution

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

a

b

November, 28-29, 2008 p.13

Interpolation functions

a

b

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.14

Trefftz Method

PART 1

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.15

Boundary value problem

1 1u u=-2 2u u=-

PART 2

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.16

1u

2u11 uu

22 uu 1 0u =

2 0u =

PART 1 + PART 2 :

( )

( )

( )

1

1

0 01

( , )

1 1ln cos ,

2

1 1ln cos ,

2

1( ) ln ( cos ( sin

2

m

m

m

m

m m m mm m m m

m

G x s u u

R m Rm R

u xR

m Rm

u x p p p p ) m q q ) m

rq f r

p

r q f rp r

r r r f r r fp

¥

=

¥

=

¥ - -

=

= +

ì é ùï æ öï ê ú÷çï - - ³å ÷çï ê ú÷çè øï ê úï ë ûï=í é ùï æ öï ê ú÷çï - - <÷å çï ê ú÷ç ÷ï è øê úï ë ûïîì üï ïï é ù= + + + + +åí ýê úë ûïïî

ïïïþ

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.17

Equivalence of solutions derived by Trefftz method and MFS

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Equivalence ( )

( )( )( )

0

0

0 0

ln ln ln

ln ln

ln ln

ln ln

b a R

a bp

p b R

b a

é ù- -ê úê úì ü -ï ïï ï ê ú=í ý ê úï ï - -ï ï ê úî þê ú-ê úë û

0 0

0

ln ln(2 ln ln )

( ) ln lnln ln( )(ln ln )

R a RN b

c N a a bb Rd Nb a

é ù-ê ú- +ì ü ê úï ï -ï ï =ê úí ý -ï ï ê úï ïî þ -ê ú

-ê úë û

November, 28-29, 2008 p.18

The same

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Equivalence of solutions derived by Trefftz method and MFS

November, 28-29, 2008 p.19

Equivalence of solutions derived by Trefftz method and MFS

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Trefftz method MFS

ln ,jx s j N- Î

Equivalence

addition theorem

November, 28-29, 2008 p.20

Numerical examples-case 1

(a) Trefftz method (b) Image method

Contour plot for the analytical solution (m=N).

fixed-fixed boundary

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

m=20 N=20

November, 28-29, 2008 p.21

Numerical examples-case 2

(a) Trefftz method (b) Image method

Contour plot for the analytical solution (m=N).

fixed-free boundary

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

m=20 N=20

November, 28-29, 2008 p.22

Numerical examples-case 3

(a) Trefftz method (b) Image method

Contour plot for the analytical solution (m=N).

free-fixed boundary

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

m=20 N=20

November, 28-29, 2008 p.23

Numerical and analytic ways to determine c(N) and d(N)

Values of c(N) and d(N) for the fixed-fixed case.

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

0 10 20 30 40 50

N

-12

-8

-4

0

c(N

) &

d(N

)

an a ly tic c (N )n u m erica l c (N )an a ly tic d (N )n u m erica l d (N )

November, 28-29, 2008 p.24

Numerical examples- convergence

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Pointwise convergence test for the potential by using various approaches.

0 2 4 6 8 10

m

-0 .02

-0.01

0

0.01

0.02

u (6 ,/3 )

Im a g e m e th o dT re fftz m e th o dC o n v en tio n a l M F S

November, 28-29, 2008 p.25

Numerical examples- convergence rate

Image method Trefftz methodConventional MFS

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Best Worst

November, 28-29, 2008 p.26

Optimal location of MFS

Depends on loading

Depends on geometry

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.27

Conclusions

The analytical solutions derived by the Trefftz method and MFS were proved to be mathematically equivalent for the annular Green’s functions. We can find final two frozen image points (one at origin and one at infinity). Their singularity strength can be determined numerically and analytically in a consistent manner. Convergence rate of Image method(best), Trefftz method and MFS(worst) due to optimal source locations in the image method

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.28

Conclusions

Optimal image group points depend on loading

Frozen image point depends on geometry

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz and MFS

5. Numerical examples6. Conclusions

November, 28-29, 2008 p.29

Thanks for your kind attentions

You can get more information from our website

http://msvlab.hre.ntou.edu.tw/

The 32nd Conference on Theoretical and Applied Mechanics

top related