novel ccu technologies a sapea report · 2018-10-03 · w/ ccs o 2 s t-o 2 s fossil (reduced)...

Post on 11-Mar-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Novel CCU TechnologiesA SAPEA Report

Marco Mazzotti, ETH ZurichDG Clima Workshop

Brussels – September 17th, 2018

Outline

1. The CCU system2. RES efficiency in delivering energy services3. Carbon balances of technology chains4. Innovation needed

1. The CCU system

2. CO2conversion

C-rich product 3. Product

utilizationC-rich waste1. CO2

capture CO24. Disposal

of CO2

1. The CCU system

2. CO2conversion

C-rich product 3. Product

utilizationC-rich waste1. CO2

capture CO24. Disposal

of CO2

1. The CCU system

2. CO2conversion

C-rich product 3. Product

utilizationC-rich waste1. CO2

capture CO24. Disposal

of CO2

1. The CCU system

2.2. H2synthesis H2

2.3. CO2 + H2 reaction

2.1. RES harvesting power

2. CO2conversion

C-rich product 3. Product

utilizationC-rich waste

1. CO2capture CO2

4. Disposal of CO2

1. The CCU system

2.2. H2synthesis

H22.3. CO2 +

H2 reaction2.1. RES

harvesting power

CCU POTENTIAL IN EU TO SUPPORT:• climate change objectives;• circular economy (O- vs. L-economy);• energy security and RES deployment;• evolution of CO2 capture systems.

2. CO2conversion

C-rich product 3. Product

utilizationC-rich waste

1. CO2capture CO2

4. Disposal of CO2

1. The CCU system

2.2. H2synthesis

H22.3. CO2 +

H2 reaction2.1. RES

harvesting power

CCU POTENTIAL IN EU TO SUPPORT:• climate change objectives;• circular economy (O- vs. L-economy);• energy security and RES deployment;• evolution of CO2 capture systems.

WG VIEW: SOCIETAL SERVICES• power generation and distribution;• fuels (and power) for transport;• long-term long-range RES storage;• industrial products and materials.

2. CO2conversion

C-rich product 3. Product

utilizationC-rich waste

1. CO2capture CO2

4. Disposal of CO2

1. The CCU system

2.2. H2synthesis

H22.3. CO2 +

H2 reaction2.1. RES

harvesting power

CCU CYCLES• Energy cycle• Carbon cycle• Material cycles

CCU POTENTIAL IN EU TO SUPPORT:• climate change objectives;• circular economy (O- vs. L-economy);• energy security and RES deployment;• evolution of CO2 capture systems.

WG VIEW: SOCIETAL SERVICES• power generation and distribution;• fuels (and power) for transport;• long-term long-range RES storage;• industrial products and materials.

2. RES efficiency in service delivery

2. RES efficiency in service delivery

2. RES efficiency in service delivery

2. RES efficiency in service delivery100%

100%

80%

H2

100%

H2O

40%

45%

2. RES efficiency in service delivery100%

100%

80%

H2

100%

H2O

40%

45%

2. RES efficiency in service delivery100%

100%

80%

CH4

15%

35%

CO2 + REN

H2

100%

H2O

40%

45%

2. Energy mix100%

100%

80%

CH4

15%

35%

CO2

CO2 + REN

H2

100%

H2O

40%

2. Road transport

100%

80%

CH4

15%

CO2

CO2 + REN

9 PWh4.5 PWh 24 PWh

Road EU-283.5 PWh (2015)

RES EU-282.5 PWh (2015)

3. Carbon balances

3. Carbon balances

1. L-economy

3. Carbon balancesFunctional unit

processing utilizationC-rich product

C-free product

C-rich feedstock (reduced C)

C-free resources (materials and/or

energy)

CO2 CO2

C-free waste

C-free waste

service

3. Carbon balancesFunctional unit 1: C-use and centralized CO2 emissions

processing utilizationC-rich product

C-free product

C-rich feedstock (reduced C)

C-free resources (materials and/or

energy)

CO2 CO2

C-free waste

C-free waste

service

Functionalunit1:•  fossil-fuel-firedpowerplant•  largescaleindustrialboilerforheat

generation•  chemicalplantcoupledtoincinerator

forC-richwastedisposal(polymericmaterials)

Functionalunit2:•  ureaproductionanduse•  fuels(cars,ships,planes)synthesis

anduse•  chemicalplantnot-coupledto

incinerator,ortoincineratorwithoutCO2capture

3. Carbon balancesFunctional unit 1: C-use and centralized CO2 emissions

Functional unit 2: C-use and distributed CO2 emissions

processing utilizationC-rich product

C-free product

C-rich feedstock (reduced C)

C-free resources (materials and/or

energy)

CO2 CO2

C-free waste

C-free waste

service

Functionalunit1:•  fossil-fuel-firedpowerplant•  largescaleindustrialboilerforheat

generation•  chemicalplantcoupledtoincinerator

forC-richwastedisposal(polymericmaterials)

Functionalunit2:•  ureaproductionanduse•  fuels(cars,ships,planes)synthesis

anduse•  chemicalplantnot-coupledto

incinerator,ortoincineratorwithoutCO2capture

3. Carbon balances

1. L-economy

Functional unit 1: point source CO2emissions

Functional unit 2: distributed CO2 emissions

3. Carbon balances

1. L-economyposit

ive

CO2

emiss

ions

Functional unit 1: point source CO2emissions

Functional unit 2: distributed CO2 emissions

3. Carbon balances

1. L-economyposit

ive

CO2

emiss

ions

Fossil (reduced) carbonOxidized carbon (CO2)Synthetic (reduced) carbonBiogenic (reduced) carbon

Functional unit 1: point source CO2emissions

Functional unit 2: distributed CO2 emissions

Renewable energy sourceCO2 conversion plant, incl. electrolyzer for H2

Direct air capture of CO2 from the atmosphere (DAC)

Biomass treatment plant

Managed biomass growth

Post-combustion CO2 capture (PCC)

Underground CO2 storage

CO2 in the atmosphere

3. Carbon balances

1. L-economy

3. L-economy

w/ CCS

po

sit

ive

CO

2

em

issio

ns

ne

t-ze

ro C

O2

em

issio

ns

Fossil (reduced) carbon

Oxidized carbon (CO2)

Synthetic (reduced) carbon

Biogenic (reduced) carbon

Functional unit 1: point source CO2

emissions

Functional unit 2: distributed CO2 emissions

Renewable energy source

CO2 conversion plant, incl. electrolyzer for H2

Direct air capture of CO2 from the atmosphere (DAC)

Biomass treatment plant

Managed biomass growth

Post-combustion CO2 capture (PCC)

Underground CO2 storage

CO2 in the atmosphere

3. Carbon balances

1. L-economy

3. L-economyw/ CCS

posi

tive

CO

2em

issi

ons

net-

zero

CO

2em

issi

ons

4. L-economyw/ DAC-CS

Fossil (reduced) carbon

Oxidized carbon (CO2)

Synthetic (reduced) carbon

Biogenic (reduced) carbon

Functional unit 1: point source CO2

emissionsFunctional unit 2: distributed CO2 emissions

Renewable energy sourceCO2 conversion plant, incl. electrolyzer for H2

Direct air capture of CO2 from the atmosphere (DAC)

Biomass treatment plant

Managed biomass growth

Post-combustion CO2 capture (PCC)

Underground CO2 storage

CO2 in the atmosphere

3. Carbon balances

1. L-economy

3. L-economyw/ CCS

2. L-economy w/ CCUposit

ive

CO2

emiss

ions

net-z

ero

CO2

emiss

ions

4. L-economyw/ DAC-CS

Fossil (reduced) carbonOxidized carbon (CO2)Synthetic (reduced) carbonBiogenic (reduced) carbon

Functional unit 1: point source CO2emissions

Functional unit 2: distributed CO2 emissions

Renewable energy sourceCO2 conversion plant, incl. electrolyzer for H2

Direct air capture of CO2 from the atmosphere (DAC)

Biomass treatment plant

Managed biomass growth

Post-combustion CO2 capture (PCC)

Underground CO2 storage

CO2 in the atmosphere

3. Carbon balances

1. L-economy

3. L-economyw/ CCS

2. L-economy w/ CCU

5. O-economy w/ CCU

6. O-economyw/ DAC-CU

posi

tive

CO2

emis

sion

sne

t-ze

ro C

O2

emis

sion

s

4. L-economyw/ DAC-CS

Fossil (reduced) carbon

Oxidized carbon (CO2)

Synthetic (reduced) carbon

Biogenic (reduced) carbon

Functional unit 1: point source CO2

emissionsFunctional unit 2: distributed CO2 emissions

Renewable energy sourceCO2 conversion plant, incl. electrolyzer for H2

Direct air capture of CO2 from the atmosphere (DAC)

Biomass treatment plant

Managed biomass growth

Post-combustion CO2 capture (PCC)

Underground CO2 storage

CO2 in the atmosphere

3. Carbon balances

1. L-economy

3. L-economy

w/ CCS

2. L-economy w/ CCU

5. O-economy

w/ CCU

6. O-economy

w/ DAC-CU

7. O-economy w/ bio-energy

po

sit

ive

CO

2

em

issio

ns

ne

t-ze

ro

CO

2

em

issio

ns

4. L-economy

w/ DAC-CS

Fossil (reduced) carbon

Oxidized carbon (CO2)

Synthetic (reduced) carbon

Biogenic (reduced) carbon

Functional unit 1: point source CO2

emissions

Functional unit 2: distributed CO2 emissions

Renewable energy source

CO2 conversion plant, incl. electrolyzer for H2

Direct air capture of CO2 from the atmosphere (DAC)

Biomass treatment plant

Managed biomass growth

Post-combustion CO2 capture (PCC)

Underground CO2 storage

CO2

in the atmosphere

3. Carbon balances

1. L-economy

3. L-economy

w/ CCS

2. L-economy w/ CCU

5. O-economy

w/ CCU6. O-economy

w/ DAC-CU

7. O-economy w/ bio-energy

8. NET-economy w/ bio-

energy and CCS: BECCS

9. NET-economy w/

DAC and CS: DACCS

po

siti

ve C

O2

em

issi

on

s

ne

gati

ve C

O2

em

issi

on

s

ne

t-ze

ro C

O2

em

issi

on

s

4. L-economy

w/ DAC-CS

Fossil (reduced) carbon

Oxidized carbon (CO2)

Synthetic (reduced) carbon

Biogenic (reduced) carbon

Functional unit 1: point source CO2

emissions

Functional unit 2: distributed CO2 emissions

Renewable energy sourceCO2 conversion plant, incl. electrolyzer for H2

Direct air capture of CO2 from the atmosphere (DAC)

Biomass treatment plant

Managed biomass growth

Post-combustion CO2 capture (PCC)

Underground CO2 storage

CO2 in the atmosphere

3. Carbon balances

1. L-economy

3. L-economyw/ CCS

2. L-economy w/ CCU

5. O-economy w/ CCU

6. O-economyw/ DAC-CU

7. O-economy w/ bio-energy

8. NET-economy w/ bio-energy and CCS: BECCS

9. NET-economy w/ DAC and CS: DACCS

posi

tive

CO

2em

issi

ons

nega

tive

CO

2em

issi

ons

net-

zero

CO

2em

issi

ons

4. L-economyw/ DAC-CS

A FEW COMMENTS• C-free RES to be LCA-assessed;• CCU neither sufficient nor needed for O-

economy, while CO2 capture needed;• CO2 storage necessary for NETs;• full LCA needed to allocate CO2 emissions

to stakeholders.

3. Carbon balances

1. L-economy

3. L-economyw/ CCS

2. L-economy w/ CCU

5. O-economy w/ CCU

6. O-economyw/ DAC-CU

7. O-economy w/ bio-energy

8. NET-economy w/ bio-energy and CCS: BECCS

9. NET-economy w/ DAC and CS: DACCS

posi

tive

CO

2em

issi

ons

nega

tive

CO

2em

issi

ons

net-

zero

CO

2em

issi

ons

4. L-economyw/ DAC-CS

A FEW COMMENTS• C-free RES to be LCA-assessed;• CCU neither sufficient nor needed for O-

economy, while CO2 capture needed;• CO2 storage necessary for NETs;• full LCA needed to allocate CO2 emissions

to stakeholders.

SIMPLIFIED SYSTEM ANALYSIS• the whole technology chain, incl. RES,

CO2 source, product, C-waste release;• Carbon and energy balances around the

system boundaries;• infrastructure and land use needs;• deployment current and projected scale.

4. Innovation needed1. Policy perspective – Measures, regulations and incentives

should examine the energy system, including CCU, in a holistic, integrated, coordinated and transparent manner.

2. Systemic perspective – A system approach is required when evaluating the energy system and its CCU sub-systems; progress is needed, in terms both of stakeholder awareness and of consistent definitions of system boundaries and of reference datasets.

3. Technology perspective – There are scientific and technical challenges in the areas of: 1. collection and purification of CO2 from different sources;2. synthesis of green-hydrogen via water splitting powered by RES;3. reductive activation catalytic technologies for CO2 conversion to

fuels and chemicals.

top related