introduction to fib

Post on 19-Dec-2016

277 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

INTRODUCTION TO :DUAL BEAM FOCUSED ION BEAM

SCSAM Short CourseAmir Avishai

RESEARCH   QUESTIONS

FIB slice showing detail of axons and myelin sheaths, Mitochondria.

Cross section of50nm Cu Vias

Solid Fuel Cell

Dual Beam FIBs Open New Dimensions

TEM Liftout

MEMS Device

Defect Analysis

OUTLINE

- Beam Optics and Signals Generated.- Beam Energy & Current and Ion-Solid Interactions.- FIB Applications.- TEM and Local Electrode Atom Probe Liftout, FIB Prototyping.- 3D Imaging.

FIB Flavors - LMIS (Ga) FIB vs Plasma (Xe) FIB

Laurens Kwakman - FEI

LMIS

Plasma

Helios 650

DUAL BEAM FIB OPTICS

FIB\SEM Schematic

Ion‐Solid Interactions

Secondary electronsSecondary ions, Backsputtered ions, Neutral atoms, Implanted ions,

•Sputtering/Milling•FIB Imaging

•Ion Channeling •Redeposition•Surface amorphisation

Detector selection for Secondary Electrons Produced by the Ion Beam

Low Voltage Sample Clean up (5kV)Notice the Shadowing

OUTLINE

- Beam Optics and Signals Generated.- Beam Energy & Current and Ion-Solid Interactions.- FIB Applications.- TEM and Local Electrode Atom Probe Liftout, FIB Prototyping.- 3D Imaging.

Prenitzer et al., M&M 2003

Ion‐Solid Incidence Angle & Sputter Yield 

Milling Rate for different Materials 

Prenitzer et al., M&M 2003

All cuts were done under the same conditions and are presented at the same magnification.

FIB Ion Channeling Effects on Contrast and MiIling

Science, Imaging and Microscopy, FIB Milling and Channeling, Nov. 01, 2008

FIB Ion Channeling Effects on Contrast and MiIling

C.A.Volkert MAY 2007

Science, Imaging and Microscopy, FIB Milling and Channeling, Nov. 01, 2008

FIB Surface Beam Damage As Function of Voltage

30 keV 5 keV 2 keV~ 21 nm ~ 2 nm 0.5nm -1.5nm

5 nm 2 nm 2 nm

With Cs corrected TF20Giannuzzi et al. M&M 2005

Beam current will effect mostly milling rate and heating

OUTLINE

- Beam Optics and Signals Generated.- Beam Energy & Current and Ion-Solid Interactions.- FIB Applications.- TEM and Local Electrode Atom Probe Liftout, FIB Prototyping.- 3D Imaging.

Gas Assisted Pattern options

Deposition Gases•Platinum•Tungsten•Carbon•Insulator•Non-standard Requests, Au

Reactive Gases•Iodine = EE•XeF2= IEE•Delineation Etch =DEE•Selective Carbon Milling = SCM

Failure Analysis ‐ Device

C NO

Al

Si

P

Al

P

Si

O

Al

P

Si

OC N

OAl

Si

PPt

Ga

Failure Analysis ‐ Device

Cross Sections of Polymers and Bio Samples

Photosensitive Polymers(Selective Carbon etch - Water)

Acrylonitrile butadiene styrene (ABS)

3 m

TiMg

Cross Section of Critical point dried Rods cell from a Wild Mouse Eye

Failure Analysis – Oxide & Polymer

Pt

O

C

Si

C

O

Si

Ga

in situ testing

Thermal Measurement on Carbon nanofiber

N. Mahanta & A. Abramson, CWRU

OUTLINE

- Beam Optics and Signals Generated.- Beam Energy & Current and Ion-Solid Interactions.- FIB Applications.- TEM and Local Electrode Atom Probe Liftout, FIB Prototyping.- 3D Imaging.

TEM liftouts

a. d.

c.

LEAP liftouts – Carburized Steel3D Atom Probe Tomography

Carbon Atom Map

CWRU - Danqi Wang

Create structure

Define Layer Alignment & Multi

site setup

Assign Actions to LayersLoad GDSII into NanoBuilder

Create (CAD) design

DEPOSIT

MILL

DesignCreation

ProcessDefinition

ProcessExecution

GDS editoror NanoBuilderbuilt-in editor

NanoBuilderNanoArchitect (offline)

DualBeam + NanoBuilder

FIB Prototyping NanoBuilder Work Flow

10 μm

50 μm

200 nm

Example: array of IR plasmonic waveguides

FIB Prototyping NanoBuilder

• Waveguides written with sub-50 nm accuracy over 200 x 200 µm2 area.

• Total processing time: 10 hours

Courtesy of CIC NanoGUNE - 2013

Multi-field writing with NanoBuilder

OUTLINE

- Beam Optics and Signals Generated.- Beam Energy & Current and Ion-Solid Interactions.- FIB Applications.- TEM and Local Electrode Atom Probe Liftout, FIB Prototyping.- 3D Imaging.

SERIAL ION ABLATION SEM VS SERIAL BLOCK FACE SEM

• HRSEM • Small field of view, slow cutting, • Wide range of thickness• Any material• High vacuum • Artifacts – curtaining• Site Specific

Ion beam Microtome• Regular FEG • Large Field of view, fast cutting• Limited thickness• Soft materials• High pressure mode and wet

mode• Artifacts – Chatter marks

3D IMAGING APPROACHES

3D Reconstruction of a Resin‐Bonded Interface of a Tooth

Phase 1Phase 2Phase 3

Phase fraction

Phase 1

Naima Hilli

3D VOLUME ANALYSIS & MICROSTRUCTURAL PARAMETERS

3D VOLUME ANALYSIS & MICROSTRUCTURAL PARAMETERS

The pillars are constructed both parallel and perpendicular to the interfaces. The investigation of parameters like tortuosity is performed.

Phase 1Phase 2Phase 3

Sample 1

Sample 2

Naima Hilli

Parameter Sample 1 Sample 2Phase 1 ( vol%) 20.1± 2.1 27.1± 1.2Phase 1 particle diameter (m) 2.3± 0.8 3.0± 1.1

Phase 2 (vol%) 40.2± 1.8 36.4± 2.3Phase 3 (vol%) 39.9± 1.4  36.5± 0.8

Tortuosity (Phase 1) 2.3± 0.6 1.7± 0.5

Examples of 3D SEM Imaging of Biological TissuesDr. Grahame Kidd, Lerner Institute Cleveland Clinic

Internodal axon samplesAxons n= 18diameters = 0.7 – 1.6 umlength sampled = 19‐36 ummitos / mm = 85 – 680mito vol : axon vol = 2.5 – 9%

Mitochondrian= 195length range = 0.5 – 13 um

Mitochondrial Sizes Internodal Cerebellar Axons

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

Length (um)

Volu

me

(um

)

Series1

Mitochondrial Diameters

00.10.20.30.40.50.6

0 2 4 6 8 10 12 14

Length (um)

(Cal

c D

iam

eter

um

)

Series1

Axonal mitochondria tend to be thin in cross section (0.1‐0.3 um) and increase in length as they increase in volume .

Quantitative Analysis – Axonal Mitochondria

500nm

Analysis of Void Defects in IC Device

QUESTIONS

Can you Find the Cat?!

top related