introduction to electrostaticsphysics.gmu.edu/~joe/phys685/topic1.pdfintroduction to electrostatics...

Post on 18-Apr-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

 

 

Introduction to Electrostatics

Reading:  Jackson 1.1 through 1.9, 1.11                Griffiths Ch 1 and Appendix A

Brief review of vector calculus

Consider a scalar field

The gradient tells us how F varies on small displacements

=>  ∇F points in dir. of max increase of F;   |∇F| = rate of increase of F                                                                                             along this dir.

In Cartesian coords:

1

(using chain rule)

Can think of  ∇  as a differential operator:

Now consider a vector field

The divergence is the flux ofemerging from an infinitesimalvolume, per unit volume:

dxdy

dz

Flux out of x faces:

Similarly for y, z  =>  flux out of cube

2

Dividing a finite region into infinitesimal blocks and noting pair­wisecancellation in interior 

=>  Divergence Theorem:

The curl tells us about the circulation of the vector field:

(x,y) (x+dx, y)

(x+dx, y+dy)(x, y+dy)

z

Line integral:

3

is the lineintegral of the vector field around an infinitesimal closed loop, ⊥ to x,y,z, per unit area

The x,y,z­componentof

is the z­component of

Similarly for x, y­components

Dividing a finite surface into infinitesimal squares and noting pair­wisecancellation in interior 

=>  Stokes's Theorem:

Now consider curvilinear coord systems  (still in 3D Euclidean space,orthonormal at each point).

Line element

(For those who took relativity:  f, g, h =

4

( f, g, h are called scale factors) 

For example, spherical coords

Again, for a scalar field

Also, 

So, for spherical coords  (f = 1, g = r, h = r sin ):

5

SP 1.1

Divergence:   Flux out of u faces: u u+du

Similarly for v, w  =>

So, for spherical coords (f = 1, g = r, h = r sin ):

6

Curl

(u,v)

(u, v+dv) (u+du, v+dv)

(u+du, v)

w

=>   w­component of

Similarly for u, v­components  =>

7

So, for spherical coords  (f = 1, g = r, h = r sin ):

See front and back covers of Jackson for vector identities, theorems, andderivatives in curvilinear coords.

8

Problem 1:   Prove the following variant of Stokes's Theorem:

Stokes's Thm:

0

Must be true for arbitrary R  =>  the integrals are equal.

9

= unit normal vector

Now, we focus on electrostatics:

Coulomb's Law: (force on 1 by 2)

We adopt SI units; see Jackson appendix for conversion between SI andGaussian.

Electric field:

(field due to a point charge q1 at

(field due to a continuous charge distribution)

Point charges can be treated as a distribution using the Dirac delta function.

)

10

In 1D:

if the region of integration (x1, x

2)

includes x = a; zero otherwise

Specifically: if region includes x = a

Clearly (x­a) is undefined at x=a, so it really is not a function.

We can try to express it as a limit, e.g.:

But does not exist.

This limit does exist!

Thus, (x) makes sense when it appears as part of an integrand—this is the only context in which it should be used.

11

With for a collection of point charges,

Two expressions involving delta functions, D1(x) and D

2(x), are equal if:

for all well­behaved functions   f (x).

12

Problem 2:  Show that when k is any non­zero constant.

For arbitrary  f (x) :

Dirac delta function in curvilinear coords:

assuming is not a degenerate point, i.e., it is not characterized by more than one set of coord values.

13

Examples of degenerate points:   origin in plane polar coords (multiple )

z­axis in spherical and cylindrical coords                                   (again, multiple )

At a point with multiple values of coord w :

Examples

Cylindrical coords:  point

Not on z­axis:

On z­axis:

Check:

14

Spherical coords:  point

Not on z­axis:

using cos  rather than  :

On positive z­axis:

using cos  rather than  :

The origin (degenerate in both  and ):

Note:  dimension of delta function = inverse of dimension of argument.

Dimension of is  length­3

(r)    is  length­1

()    is  rad­1  (dimensionless)

15

Examples involving delta function in curvilinear coords

Find the charge density for the following situations:

1)  Spherical coords, charge Q uniformly distributed over a spherical shell         with radius R:

2)  Cylindrical coords, charge per unit length  uniformly distributed over         a cylindrical surface of radius b:

16

3)  Cylindrical coords, charge Q spread uniformly over a flat circular disk          of negligible thickness and radius R:

4)  Same as (3), but in spherical coords:

Check:

17

Coulomb's Law plus linear superposition of electric fields yields integralform of Gauss's Law:

Divergence Thm yields the differential form:

Coulomb's Law also yields

=>  existence of scalar potential:

Work done on moving a charge against the field:

Potential energy of a charge q =  q 

18

SP 1.2

Potential energy of a collection of point charges

Start with one point charge q1, located at ; its potential

Bring next charge, q2, in from infinity to point

Work done against field of 1 is

Bring in a 3rd charge, q3, from infinity to

Work done =  etc.

=>  potential energy = total work done

For a continuous charge dist :

19

Vector identity:

Taking the bounding surface at infinity, the first term vanishes(E ∝ r­2 ,  ∝ r­1 ).

=>  energy density in the field

Red flag:  Field energy density is non­negative, but energy of a set ofpoint charges can be negative (e.g., 2 charges of opposite sign).What's going on?

20

In the integral form of W, is the total potential at , due to the restof the charge dist plus the charge at .  For a truly continuous charge dist,

this is the same as the  due to the rest of the dist, since the amount of charge at a point vanishes.  For a point charge,at the location of the point charge  =>  an infinite "self­energy" that was not included in the energy of the point charge collection (i.e., the charges were taken as already assembled).

Note:  infinite self­energy  =>  infinite mass of a point particle unlessa negative infinite mass contribution arises from non­electromagneticsource (“renormalization”).

What happens to at a charged surface?

Consider a small rectangular surface ⊥ to the charged surface:

l

hE

∥, 1

E∥, 2

as  h  0 =>  tangential component ofis continuous across the surface

21

Gaussian pillbox:

In a conductor, free charges move in response to an applied

Charge flows until inside conductor  ( of induced charges

cancels applied field).

=>  any net and induced charge resides on the surface

 = const in a conductor, since

External is perpendicular to conductor's surface (since tangential 

component of is continuous across surface and = 0 inside);

22

Suppose we have a conductor held at fixed potential 0.  We would like to 

find  everywhere outside the conductor.  If we knew how charge distributeditself on the surface of the conductor, we could use

But, can we find without knowing

Yes!  We'll find a differential eqn for and apply boundary conditions.

For regions where  = 0,

Let's verify that satisfies the Poisson eqn.

23

= 0 everywhere except r = 0, where r­2 is                                                           undefined.

24

Treatment of the boundary value problem is aided by use of Green'sIdentities.

Start with the Divergence Thm:

= normal derivative on S, directed    outward from within V)

(Green's First Identity)

(interchanging  and )

Subtracting eqns  =>

(Green's Theorem)

25

;

(1.36)

Note:

1.  For surface at , this reduces to our original result for(assuming falls off faster than R­1).

2.  If  = 0 in V,  anywhere in V depends only on  and on S.

26

Green's 1st Identity leads to powerful conclusions re. the uniqueness of solns to electrostatic boundary value problems.  Specifically, problems with Dirichlet or Neumann boundary conditions have unique solns to the Poissoneqn.

Dirichlet:   is specified everywhere on the bounding surface.

Neumann: is specified everywhere on bounding surface.

Proof:   Suppose there are 2 different solns, 1 and 

2

In V:

On S:     Dirichlet:

Neumann:

27

Green's 1st Identity with  =  = U:0

product = 0 for both Dirichlet and                                              Neumann

=>   is unique to within an additive constant.

Suppose the boundary of V consists of the surface of a set of conductorsplus a sphere at ∞.

Dirichlet:   is specified on each conductor  (e.g., by connecting a                  battery btwn the conductor and ground)

28

Neumann: is specified on each conductor.We don't know !

Suppose we know total charge on each conductor.  Is soln unique?  In this case, for each conductor surface,

The potentials can be brought out of the integrals since they are constanton each conductor surface, and the resulting integral = Q by Gauss's Law.

So, again, U = const  =>   is unique to within an additive constant.

29

Consider a set of conductors.  Conductor 1 has Q = 1 C and the rest have Q = 0.

1 2

3Q = 1 CQ = 0

Q = 0

This has a unique soln for the potential, The surface charge dist,is also uniquely determined.  Now alter the charge on conductor 1 from 1 C to  C.Do the charge dists change?Suppose the dists are all multiplied by :

Q remains 0 on 2 and 3.

Thus, the soln to Poisson's eqn is unique for a region bounded by conductors with either specified potentials or specified charges.  (A boundary at infinityis also acceptable.)

30

Since the Poisson eqn is linear, a new potentialis a solution.

Since the charge on each conductor is specified, the soln is unique.

So:  NO—the charge dists don't change.

If all conductors but conductor 1 have Q = 0, then  ∝ Q1.

Since the Poisson eqn is linear, the sum of 2 solns is a soln.

In particular, we can add the obtained for the case where(1) all but conductor 1 have Q = 0 and (2) all but conductor 2 have Q = 0.

Again, the soln is unique for these boundary conditions.

Thus, the potential at the surface of the ith  conductor, Vi , is given by

The pij are called coefficients of capacity and 

depend only on the geometry of the conductors.

31

Inverting the eqns for Vi in terms of Q

j :

Cii are called capacitances.  C

ij, i ≠ j, are called coeffs of induction.

The capacitance C of 2 conductors with Q2 = ­Q

1 and potential difference

V is defined by

The potential energy for the system of conductors is

As a special case, for a capacitor

32

SP 1.3—1.9 

top related