high energy neutrinos from astrophysical sources: a self...

Post on 28-Jul-2020

1 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

High energy neutrinos from astrophysical sources:a self-consistent approach

Ricard Tomàs

AHEP Group - Institut de Física Corpuscular(CSIC - Universitat de València)

based on Phys. Rev. D 74 (2006) 063009 [astro-ph/0606406]

in collaboration with M. Kachelrieß

JIGSAW 2007Joint Indo-German School And Workshop 2007

Neutrinos in Physics, Astrophysics and Cosmology19 February 2007 - Mumbai, India

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 1 / 34

Outline

1 Motivation

2 Astrophysical sourcesOptically thick sources as neutrino sources

3 Spectra from a single sourceNeutrino YieldUnnormalized neutrino fluxesFlavor content

4 Summary

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 2 / 34

Outline

1 Motivation

2 Astrophysical sourcesOptically thick sources as neutrino sources

3 Spectra from a single sourceNeutrino YieldUnnormalized neutrino fluxesFlavor content

4 Summary

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 2 / 34

Outline

1 Motivation

2 Astrophysical sourcesOptically thick sources as neutrino sources

3 Spectra from a single sourceNeutrino YieldUnnormalized neutrino fluxesFlavor content

4 Summary

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 2 / 34

Outline

1 Motivation

2 Astrophysical sourcesOptically thick sources as neutrino sources

3 Spectra from a single sourceNeutrino YieldUnnormalized neutrino fluxesFlavor content

4 Summary

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 2 / 34

Motivation

Motivation

Interest of high energy neutrinos (HE ν)penetrating power + no deflection → neutrino astronomy

interior of stars [G. G. Raffelt, 1996, R. C. Schirato and G. M. Fuller, 2002]

distant cosmological epochs→ relic neutrino absorption spectroscopy[B. Eberle, A. Ringwald, L. Song and T. Weiler, 2004]

origin of UHECRs→ characterize astrophysical sources[L. A. Anchordoqui, H. Goldberg, F. Halzen and T. J. Weiler, 2005, T. Kashti and E. Waxman, 2005,

M. Ahlers, L. A. Anchordoqui, H. Goldberg, F. Halzen, A. Ringwald, and Th. J. Weiler, 2005]

ν conversion from the source to the detector →

Main problem: low statistics

Requirements: ICECUBE, Auger, Anita, ...

flavor determination[D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003]

large HE ν fluxestop-down models:

topological defects: disfavouredSHDM : disfavoured

bottom-up models→ astrophysical sources→ optically thick

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 3 / 34

Motivation

Motivation

Interest of high energy neutrinos (HE ν)penetrating power + no deflection → neutrino astronomyν conversion from the source to the detector → ν properties

mixing angles [H. Athar, M. Jezabek and O. Yasuda, 2000, P. Bhattacharjee and N. Gupta, 2005,

P. D. Serpico and M. Kachelrieß, 2005, M. C. González-García, F. Halzen and M. Maltoni, 2005, P. Serpico, 2005]

CP phase [P. D. Serpico and M. Kachelrieß, 2005, W. Rodejohann, 2007]

ν decay [J. F. Beacom et al, 2002, G. Barenboim and C. Quigg, 2003, D. Meloni and T. Ohlsson, 2006]

+ terrestrial experiments→mass hierarchy [W. Winter, 2006]

Main problem: low statistics

Requirements: ICECUBE, Auger, Anita, ...

flavor determination[D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003]

large HE ν fluxestop-down models:

topological defects: disfavouredSHDM : disfavoured

bottom-up models→ astrophysical sources→ optically thick

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 3 / 34

Motivation

Motivation

Interest of high energy neutrinos (HE ν)penetrating power + no deflection → neutrino astronomyν conversion from the source to the detector → ν properties

Main problem: low statistics

Requirements: ICECUBE, Auger, Anita, ...

flavor determination[D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003]

large HE ν fluxestop-down models:

topological defects: disfavouredSHDM : disfavoured

bottom-up models→ astrophysical sources→ optically thick

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 3 / 34

Motivation

Motivation

Interest of high energy neutrinos (HE ν)penetrating power + no deflection → neutrino astronomyν conversion from the source to the detector → ν properties

Main problem: low statistics

Requirementsbig ν detection volume : ICECUBE, Auger, Anita, ...

flavor determination[D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003]

large HE ν fluxestop-down models:

topological defects: disfavouredSHDM : disfavoured

bottom-up models→ astrophysical sources→ optically thick

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 3 / 34

Motivation

Motivation

Interest of high energy neutrinos (HE ν)penetrating power + no deflection → neutrino astronomyν conversion from the source to the detector → ν properties

Main problem: low statistics

Requirementsbig ν detection volume : ICECUBE, Auger, Anita, ...

flavor determination[D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003]

large HE ν fluxestop-down models:

topological defects: disfavoured by EGRET and spectral shape of UHECRsSHDM : disfavoured by the absence of γ at high energies and galactic anisotropy

bottom-up models→ astrophysical sources→ optically thick

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 3 / 34

Motivation

Motivation

Interest of high energy neutrinos (HE ν)penetrating power + no deflection → neutrino astronomyν conversion from the source to the detector → ν properties

Main problem: low statistics

Requirementsbig ν detection volume : ICECUBE, Auger, Anita, ...

flavor determination[D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003]

large HE ν fluxestop-down models:

topological defects: disfavouredSHDM : disfavoured

bottom-up models→ astrophysical sources→ optically thick

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 3 / 34

Astrophysical sources

Astrophysical sources

Limits

[P. Lipari, 2006]

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 4 / 34

Astrophysical sources

Astrophysical sources

LimitsWaxman-Bahcall upper limit on high energy ν fluxes [E. Waxman and J. N. Bahcall, 1999]

−→ E2φν(E) . 10−8 GeV/cm2s sr

only applies to optically thin sources↓

is it possible to get large HEν fluxes from optically thick sources?do they have any special feature?

Result

thick (τ & 1)→ multiple scattering suppresses CR flux

not high density→ not to suppress π and K decays

strongly energy dependent flavor ratio → a bump shows up

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 5 / 34

Astrophysical sources

Astrophysical sources

LimitsWaxman-Bahcall upper limit on high energy ν fluxes [E. Waxman and J. N. Bahcall, 1999]

−→ E2φν(E) . 10−8 GeV/cm2s sr

only applies to optically thin sources↓

is it possible to get large HEν fluxes from optically thick sources?do they have any special feature?

Result

thick (τ & 1)→ multiple scattering suppresses CR flux

not high density→ not to suppress π and K decays

strongly energy dependent flavor ratio → a bump shows up

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 5 / 34

Astrophysical sources

Astrophysical sources

LimitsWaxman-Bahcall upper limit on high energy ν fluxes [E. Waxman and J. N. Bahcall, 1999]

−→ E2φν(E) . 10−8 GeV/cm2s sr

only applies to optically thin sources↓

is it possible to get large HEν fluxes from optically thick sources?do they have any special feature?

Resultlarge HEν fluxes → sources

thick (τ & 1)→ multiple scattering suppresses CR flux

not high density→ not to suppress π and K decays

strongly energy dependent flavor ratio → a bump shows up

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 5 / 34

Astrophysical sources

Astrophysical sources

LimitsWaxman-Bahcall upper limit on high energy ν fluxes [E. Waxman and J. N. Bahcall, 1999]

−→ E2φν(E) . 10−8 GeV/cm2s sr

only applies to optically thin sources↓

is it possible to get large HEν fluxes from optically thick sources?do they have any special feature?

Resultlarge HEν fluxes → sources

thick (τ & 1)→ multiple scattering suppresses CR fluxnot high density→ not to suppress π and K decays

strongly energy dependent flavor ratio → a bump shows up

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 5 / 34

Astrophysical sources

Astrophysical sources

LimitsWaxman-Bahcall upper limit on high energy ν fluxes [E. Waxman and J. N. Bahcall, 1999]

−→ E2φν(E) . 10−8 GeV/cm2s sr

only applies to optically thin sources↓

is it possible to get large HEν fluxes from optically thick sources?do they have any special feature?

Resultlarge HEν fluxes → sources

thick (τ & 1)→ multiple scattering suppresses CR fluxnot high density→ not to suppress π and K decays

strongly energy dependent flavor ratio → a bump shows up

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 5 / 34

Astrophysical sources Optically thick sources as neutrino sources

Outline

1 Motivation

2 Astrophysical sourcesOptically thick sources as neutrino sources

3 Spectra from a single sourceNeutrino YieldUnnormalized neutrino fluxesFlavor content

4 Summary

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 6 / 34

Astrophysical sources Optically thick sources as neutrino sources

Optically thick sources

Transparent sources: accelerated protons interact once with thesurrounding material → relationship ν ↔ UHECR ↔ γ’soptical depth τ ≡ L/lint < 1

Optically thick sources

Hidden source: source which accelerates particles to high-energies, but itis not seen in high-energy electromagnetic radiation, τ >> 1

cocooned black hole [V. S. Berezinsky and V. L Ginzburg, 1987]

cores of AGNs [F. Stecker, C. Done, M. Salamon and P. Sommers, 1991]

collapsing galactic nucleus [V. S. Berezinsky and V. I. Dokuchaev, 2001]

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 7 / 34

Astrophysical sources Optically thick sources as neutrino sources

Optically thick sources

Transparent sources: accelerated protons interact once with thesurrounding material → relationship ν ↔ UHECR ↔ γ’soptical depth τ ≡ L/lint < 1

Optically thick sources

Hidden source: source which accelerates particles to high-energies, but itis not seen in high-energy electromagnetic radiation, τ >> 1

cocooned black hole [V. S. Berezinsky and V. L Ginzburg, 1987]

cores of AGNs [F. Stecker, C. Done, M. Salamon and P. Sommers, 1991]

collapsing galactic nucleus [V. S. Berezinsky and V. I. Dokuchaev, 2001]

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 7 / 34

Astrophysical sources Optically thick sources as neutrino sources

Optically thick sources

Transparent sources: accelerated protons interact once with thesurrounding material → relationship ν ↔ UHECR ↔ γ’soptical depth τ ≡ L/lint < 1

Optically thick sources

Hidden source: source which accelerates particles to high-energies, but itis not seen in high-energy electromagnetic radiation, τ >> 1

cocooned black hole [V. S. Berezinsky and V. L Ginzburg, 1987]

cores of AGNs [F. Stecker, C. Done, M. Salamon and P. Sommers, 1991]

collapsing galactic nucleus [V. S. Berezinsky and V. I. Dokuchaev, 2001]

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 7 / 34

Astrophysical sources Optically thick sources as neutrino sources

Optically thick sources as neutrino sources

Our Monte Carlo simulation

source: phenomenological characterizationinjected protons dN/dE ∝ E−α −→ (α = 2.2, Emax = 1024 eV)

slab with

−protons

−thermal photons −→

− size L− temperature T− magnetic field negligible

interactions: SOPHIA [A. Mücke et al., 2000] and HERWIG [G. Corcella et al., 2001]

p + γ → secondary mesons

π → µ + νµ → e + νe + νµ + νµ

K± → µ + νµ , π± + π0 , . . .K 0

L → π + e + νe , π + µ + νµ , . . .charm mesons decay

↓High Energy Neutrinos

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 8 / 34

Astrophysical sources Optically thick sources as neutrino sources

Optically thick sources as neutrino sources

Our Monte Carlo simulation

source: phenomenological characterizationinjected protons dN/dE ∝ E−α −→ (α = 2.2, Emax = 1024 eV)

slab with

−protons

−thermal photons −→

− size L− temperature T− magnetic field negligible

interactions: SOPHIA [A. Mücke et al., 2000] and HERWIG [G. Corcella et al., 2001]

p + γ → secondary mesons

π → µ + νµ → e + νe + νµ + νµ

K± → µ + νµ , π± + π0 , . . .K 0

L → π + e + νe , π + µ + νµ , . . .charm mesons decay

↓High Energy Neutrinos

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 8 / 34

Spectra from a single source Neutrino Yield

Outline

1 Motivation

2 Astrophysical sourcesOptically thick sources as neutrino sources

3 Spectra from a single sourceNeutrino YieldUnnormalized neutrino fluxesFlavor content

4 Summary

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 9 / 34

Spectra from a single source Neutrino Yield

Neutrino Yield: Yν =Jν(E)τJp(E)

[V. S. Berezinsky and V. V. Volynsky, 1979, V. S. Berezinsky and A. Z. Gazizov, 1993]

transparent source τ < 1

Yν = Yν(x) , dimensionless energy x ≡ Eωm2

p, ω = 1.6T

contribution: mainly from π decays: π → µ + νµ → e + νe + 2νµ

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 10 / 34

Spectra from a single source Neutrino Yield

contributionsmainly

π decayneutron decay

(at low energies)

T = 104 K, τ = 0.4

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 11 / 34

Spectra from a single source Neutrino Yield

Neutrino Yield: Yν =Jν(E)τJp(E)

[V. S. Berezinsky and V. V. Volynsky, 1979, V. S. Berezinsky and A. Z. Gazizov, 1993]

transparent source τ < 1

Yν = Yν(x) , dimensionless energy x ≡ Eωm2

p, ω = 1.6T

contribution: mainly from π decays: π → µ + νµ → e + νe + 2νµ

independent of T and τ

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 12 / 34

Spectra from a single source Neutrino Yield

T = 104 K T = 105 K

independent of T

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 13 / 34

Spectra from a single source Neutrino Yield

T = 104 K T = 105 K

independent of T and τ

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 13 / 34

Spectra from a single source Neutrino Yield

Neutrino Yield: Yν =Jν(E)τJp(E)

[V. S. Berezinsky and V. V. Volynsky, 1979, V. S. Berezinsky and A. Z. Gazizov, 1993]

transparent source τ < 1

Yν = Yν(x) , dimensionless energy x ≡ Eωm2

p, ω = 1.6T

contribution: mainly from π decays: π → µ + νµ → e + νe + 2νµ

independent of T and τ

optically thick sources τ & 1

multiple scattering important → critical energy xπ,Kcr (T ) : ldecay = lint

contribution depends on the energyx < xπ

cr −→ pion decayxπ

cr <∼ x <∼ xKcr → K decay

xKcr < x −→ charm meson decay

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 14 / 34

Spectra from a single source Neutrino Yield

T = 104 K, τ = 40

x < xπcr → pion decay dominates

xπcr <∼ x <∼ xK

cr → π’s scatter before decaying ⇒ K decay important

xKcr < x → K ’s scatter before decaying ⇒ charm meson decay dominates

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 15 / 34

Spectra from a single source Neutrino Yield

Neutrino Yield: Yν =Jν(E)τJp(E)

[V. S. Berezinsky and V. V. Volynsky, 1979, V. S. Berezinsky and A. Z. Gazizov, 1993]

transparent source τ < 1

Yν = Yν(x) , dimensionless energy x ≡ Eωm2

p, ω = 1.6T

contribution: mainly from π decays: π → µ + νµ → e + νe + 2νµ

independent of T and τ

optically thick sources τ & 1

multiple scattering important → critical energy xπ,Kcr (T ) : ldecay = lint

contribution depends on the energyx < xπ

cr −→ pion decayxπ

cr <∼ x <∼ xKcr → K decay

xKcr < x −→ charm meson decay

Yν depends on T : xπcr ≈ 2× 1010/(T/K)2

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 16 / 34

Spectra from a single source Neutrino Yield

T = 104 K T = 105 K

Large HE ν flux ifopaque sources (τ & 1 ⇒ L & lpint) to avoid the WB upper limitnot very high temperature (Ecr ∝ 1/T 3)

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 17 / 34

Spectra from a single source Unnormalized neutrino fluxes

Outline

1 Motivation

2 Astrophysical sourcesOptically thick sources as neutrino sources

3 Spectra from a single sourceNeutrino YieldUnnormalized neutrino fluxesFlavor content

4 Summary

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 18 / 34

Spectra from a single source Unnormalized neutrino fluxes

Unnormalized Neutrino Spectra: thickness

T = 105 K

τ & 1 =⇒ cosmic ray suppression

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 19 / 34

Spectra from a single source Unnormalized neutrino fluxes

Unnormalized Neutrino Spectra: thickness

T = 105 K

τ & 1 =⇒ cosmic ray suppression

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 19 / 34

Spectra from a single source Unnormalized neutrino fluxes

Unnormalized Neutrino Spectra: thickness

T = 105 K

τ & 1 =⇒ cosmic ray suppression

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 19 / 34

Spectra from a single source Unnormalized neutrino fluxes

Unnormalized Neutrino Spectra: thickness

T = 105 K

τ & 1 =⇒ cosmic ray suppression

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 19 / 34

Spectra from a single source Unnormalized neutrino fluxes

Unnormalized Neutrino Spectra: temperature

T = 104 K T = 107 K

high temperature =⇒ high-energy ν flux suppression

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 20 / 34

Spectra from a single source Unnormalized neutrino fluxes

Conditions for large HEν fluxes

opaque source (τ & 1) and not too dense

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 21 / 34

Spectra from a single source Flavor content

Outline

1 Motivation

2 Astrophysical sourcesOptically thick sources as neutrino sources

3 Spectra from a single sourceNeutrino YieldUnnormalized neutrino fluxesFlavor content

4 Summary

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 22 / 34

Spectra from a single source Flavor content

Flavor content (φνe, φνµ, φντ

)

Motivationmeasurable in ν telescopes and extensive air shower experiments[J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003, D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000]

: characterize sources[L. A. Anchordoqui, H. Goldberg, F. Halzen and T. J. Weiler, 2005, T. Kashti and E. Waxman, 2005]

learn about [H. Athar, M. Jezabek and O. Yasuda, 2000, P. Bhattacharjee and N. Gupta, 2005,

P. D. Serpico and M. Kachelrieß, 2005, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa, and T. J. Weiler, 2002, W. Winter, 2006]

Examplepion decay → (1,2,0)neutron beam source → (1,0,0) [L. A. Anchordoqui et al., 2003, P. D. Serpico and M. Kachelrieß, 2005]

muon-damped νµ sources from π decay → (0,1,0)[J. P. Rachen and P. Meszaros, 1998, T. Kashti and E. Waxman, 2005]

optically thick sources → (φνe , φνµ , φντ ) ?

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 23 / 34

Spectra from a single source Flavor content

Flavor content (φνe, φνµ, φντ

)

Motivationmeasurable in ν telescopes and extensive air shower experiments[J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003, D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000]

interesting applicationsastrophysical diagnostics: characterize sources[L. A. Anchordoqui, H. Goldberg, F. Halzen and T. J. Weiler, 2005, T. Kashti and E. Waxman, 2005]

learn about ν properties [H. Athar, M. Jezabek and O. Yasuda, 2000, P. Bhattacharjee and N. Gupta, 2005,

P. D. Serpico and M. Kachelrieß, 2005, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa, and T. J. Weiler, 2002, W. Winter, 2006]

Examplepion decay → (1,2,0)neutron beam source → (1,0,0) [L. A. Anchordoqui et al., 2003, P. D. Serpico and M. Kachelrieß, 2005]

muon-damped νµ sources from π decay → (0,1,0)[J. P. Rachen and P. Meszaros, 1998, T. Kashti and E. Waxman, 2005]

optically thick sources → (φνe , φνµ , φντ ) ?

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 23 / 34

Spectra from a single source Flavor content

Flavor content (φνe, φνµ, φντ

)

Motivationmeasurable in ν telescopes and extensive air shower experiments[J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003, D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000]

interesting applicationsastrophysical diagnostics: characterize sources[L. A. Anchordoqui, H. Goldberg, F. Halzen and T. J. Weiler, 2005, T. Kashti and E. Waxman, 2005]

learn about ν properties [H. Athar, M. Jezabek and O. Yasuda, 2000, P. Bhattacharjee and N. Gupta, 2005,

P. D. Serpico and M. Kachelrieß, 2005, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa, and T. J. Weiler, 2002, W. Winter, 2006]

Examplepion decay → (1,2,0)neutron beam source → (1,0,0) [L. A. Anchordoqui et al., 2003, P. D. Serpico and M. Kachelrieß, 2005]

muon-damped νµ sources from π decay → (0,1,0)[J. P. Rachen and P. Meszaros, 1998, T. Kashti and E. Waxman, 2005]

optically thick sources → (φνe , φνµ, φντ

) ?

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 23 / 34

Spectra from a single source Flavor content

Flavor content (φνe, φνµ, φντ

)

Motivationmeasurable in ν telescopes and extensive air shower experiments[J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler, 2003, D. Fargion, 1997, S. I. Dutta, M. H. Reno and I. Sarcevic, 2000]

interesting applicationsastrophysical diagnostics: characterize sources[L. A. Anchordoqui, H. Goldberg, F. Halzen and T. J. Weiler, 2005, T. Kashti and E. Waxman, 2005]

learn about ν properties [H. Athar, M. Jezabek and O. Yasuda, 2000, P. Bhattacharjee and N. Gupta, 2005,

P. D. Serpico and M. Kachelrieß, 2005, J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa, and T. J. Weiler, 2002, W. Winter, 2006]

Examplepion decay → (1,2,0)neutron beam source → (1,0,0) [L. A. Anchordoqui et al., 2003, P. D. Serpico and M. Kachelrieß, 2005]

muon-damped νµ sources from π decay → (0,1,0)[J. P. Rachen and P. Meszaros, 1998, T. Kashti and E. Waxman, 2005]

optically thick sources → (φνe , φνµ, φντ

) ?

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 23 / 34

Spectra from a single source Flavor content

Flavor Content at the source

Flavor ratio: R0 = φνµ/(φνe + φντ )

depends on the reaction → optically thin source: R0 = Rπ ≈ 2

optically thick sources: strong energy dependencex < xπ

cr → R0 = Rπ ≈ 2xπ

cr <∼ x <∼ xKcr → R0 = RK > 2⇒ bump

xKcr < x → R0 = Rch ≈ 1

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 24 / 34

Spectra from a single source Flavor content

Flavor Content at the source

Flavor ratio: R0 = φνµ/(φνe + φντ )

depends on the reaction → optically thin source: R0 = Rπ ≈ 2optically thick sources: strong energy dependence

x < xπcr → R0 = Rπ ≈ 2

xπcr <∼ x <∼ xK

cr → R0 = RK > 2⇒ bumpxK

cr < x → R0 = Rch ≈ 1

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 24 / 34

Spectra from a single source Flavor content

Flavor Content at the source

Flavor ratio: R0 = φνµ/(φνe + φντ )

depends on the reaction → optically thin source: R0 = Rπ ≈ 2optically thick sources: strong energy dependence

x < xπcr → R0 = Rπ ≈ 2

xπcr <∼ x <∼ xK

cr → R0 = RK > 2xK

cr < x → R0 = Rch ≈ 1

⇓bump at x ≈ xK

cr

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 25 / 34

Spectra from a single source Flavor content

Flavor Content at the Earth

Flavor ratio: R0 + ν oscillation → R = φDνµ

/(φDνe

+ φDντ

)

φDνα

=∑

β Pαβφνβ⇒ R depends on the ν mixing parameters (θij , δCP)

mainly on θ23

presence of a bump → information on

source: cross-over π − K decayν’s: sensitivity to the θ23 octant

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 26 / 34

Spectra from a single source Flavor content

Flavor Content at the Earth

Flavor ratio: R0 + ν oscillation → R = φDνµ

/(φDνe

+ φDντ

)

φDνα

=∑

β Pαβφνβ⇒ R depends on the ν mixing parameters (θij , δCP)

mainly on θ23

presence of a bump → information on

source: cross-over π − K decayν’s: sensitivity to the θ23 octant

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 26 / 34

Summary

Summary

High Energy Neutrinospenetrating power + no deflection → ideal astronomical messengers:UHECRs sources, ...

complementary source of ν’s → neutrino properties: mixing, CP, ...

Optically Thick SourcesNeutrino yield

multiple scattering⇒WB limit avoidedif density is too high⇒ HEν’s from π and K decay suppressed

Flavor ratio depends strongly on the energybump shows up at the cross-over between π and K

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 27 / 34

Presence of magnetic fields (work in progress ...)

Presence of magnetic fields (work in progress ...)

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 28 / 34

Presence of magnetic fields (work in progress ...)

Presence of magnetic fields (work in progress ...)

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 29 / 34

Neutrino Spectra

Neutrino Spectra

Assumptions:

injected proton spectrum:

dNp/dE ∝ E−α

α = 2 , E < 10−18 eVα = 2.7 , E > 10−18 eV

[V. Berezinsky, A. Gazizov and S. Grigorieva, 2004]

source: homogeneous slab filled with thermal photons

characterized by

T = 104 K, . . . , 107 KL = 1010 cm, . . . , , 1016 cm

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 30 / 34

Diffuse neutrino spectra from uniform sources

Diffuse neutrino spectra from uniform sources

Fν(E) = 14π

∫∞0

dzH(z)

Lν(z, Eg)

Lν(z, Eg): number of ν’s emitted per comoving volume, time and energywith generation energy Eg = E(1 + z)

Lν(z, Eg) = η(z)Jν(Eg)

Jν(Eg): neutrino spectra from a single sourceη(z): number of sources per co-moving volume and per unit of time

H(z): Hubble parameter, H(z)2 = H20 [Ωm(1 + z)3 + ΩΛ]

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 31 / 34

Diffuse neutrino spectra from uniform sources

Constraints

UHECR spectrum (AGASA) ⇒ limits on the proton spectra emitted⇒ Jν(E)→ optically thin sources

(AMANDAII) → sources with τ & 1

EGRET observations ⇒ limits on the electromagnetic cascade produced:

ωcas = femEtot∫∞

0dz

H(z)η(z) ≤ ωobs = 2× 10−6 eV/cm3

[R. Aloisio, V. Berezinsky and M. Kachelrieß, 2004]

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 32 / 34

Diffuse neutrino spectra from uniform sources

Constraints

UHECR spectrum (AGASA) ⇒ limits on the proton spectra emitted⇒ Jν(E)→ optically thin sources

current limits on ν fluxes (AMANDAII) → sources with τ & 1

EGRET observations ⇒ limits on the electromagnetic cascade produced:

ωcas = femEtot∫∞

0dz

H(z)η(z) ≤ ωobs = 2× 10−6 eV/cm3

[R. Aloisio, V. Berezinsky and M. Kachelrieß, 2004]

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 32 / 34

Diffuse neutrino spectra from uniform sources

Constraints

UHECR spectrum (AGASA) ⇒ limits on the proton spectra emitted⇒ Jν(E)→ optically thin sources

current limits on ν fluxes (AMANDAII) → sources with τ & 1

EGRET observations ⇒ limits on the electromagnetic cascade produced:

ωcas = femEtot∫∞

0dz

H(z)η(z) ≤ ωobs = 2× 10−6 eV/cm3

[R. Aloisio, V. Berezinsky and M. Kachelrieß, 2004]

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 32 / 34

Diffuse neutrino spectra from uniform sources

Constraints

T = 105 k and τ << 1

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 33 / 34

Diffuse neutrino spectra from uniform sources

Constraints

T = 105 k and τ & 1

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 34 / 34

Diffuse neutrino spectra from uniform sources

Constraints

T = 107 k and τ 1

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 35 / 34

Bibliography

P. D. Serpico and M. KachelrießPhys. Rev. Lett. 94 (2005) 211102.

M. C. Gonzalez-Garcia, F. Halzen and M. Maltoni,Phys. Rev. D 71 (2005) 093010.

B. Eberle, A. Ringwald, L. Song and T. WeilerPhys. Rev. D 70, 023007 (2004).

E. Waxman and J. N. Bahcall,Phys. Rev. D 59 (1999) 023002.

F. Stecker, C. Done, M. Salamon and P. SommersPhys. Rev. Lett. 66, 2697 (1991); 69, 2738(E) (1992).

V. S. Berezinsky and V. I. DokuchaevAstropart. Phys. 15, 87 (2001).

V. S. Berezinsky and V. L GinzburgMon. Not. R. Astron. Soc. 194, 3 (1987).

V. S. Berezinsky and A. Z. Gazizov,Phys. Rev. D 47 (1993) 4206.

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 35 / 34

Bibliography

V. S. Berezinsky and V. V. Volynsky,Proc. 16th Int. Cosmic Ray Conf. (Kyoto, 1979)

V. Berezinsky, A. Gazizov and S. Grigorieva,Nucl. Phys. Proc. Suppl. 136 (2004) 147

A. Mucke, R. Engel, J. P. Rachen, R. J. Protheroe and T. Stanev,Comput. Phys. Commun. 124 (2000) 290

G. Corcella et al.,JHEP 0101 (2001) 010.

R. Aloisio, V. Berezinsky and M. Kachelrieß,Phys. Rev. D 69 094023 (2004).

J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa and T. J. Weiler,Phys. Rev. D 68 (2003) 093005[Erratum-ibid. D 72 (2005) 019901].

D. Fargion,arXiv:astro-ph/9704205.

S. I. Dutta, M. H. Reno and I. Sarcevic,Phys. Rev. D 62 (2000) 123001.

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 35 / 34

Bibliography

L. A. Anchordoqui, H. Goldberg, F. Halzen and T. J. Weiler,Phys. Lett. B 621 (2005) 18 .

T. Kashti and E. Waxman,Phys. Rev. Lett. 95 (2005) 181101.

H. Athar, M. Jezabek and O. Yasuda,Phys. Rev. D 62 (2000) 103007.

G. Barenboim and C. Quigg,Phys. Rev. D 67 (2003) 073024

P. D. Serpico and M. Kachelrieß,Phys. Rev. Lett. 94 (2005) 211102.

G. G. Raffelt, 1996.

R. C. Schirato, G. M. Fuller, (. U. (. LANL), UCSD and LANL),arXiv:astro-ph/0205390.

P. Bhattacharjee and N. Gupta,asXiv:hep-ph/0501191.

P. Serpico,

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 35 / 34

Bibliography

Phys. Rev. D 73 (2006) 047301

J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa, and T. J. Weiler,Phys. Rev. Lett. 90 (2003) 181301.

J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa, and T. J. Weiler,Phys. Rev. Lett. 90 (2003) 181301.

G. Barenboim and C. Quigg,Phys. Rev. D 67 (2003) 073024.

W. Winter,hep-ph/0604191.

L. A. Anchordoqui, H. Goldberg, F. Halzen and T. J. Weiler,Phys. Lett. B 593, 42 (2004) .

J. P. Rachen and P. Meszaros,Phys. Rev. D 58 (1998) 123005.

M. Ahlers, L. A. Anchordoqui, H. Goldberg, F. Halzen, A. Ringwald, andTh. J. Weiler, 2005Phys. Rev. D 72 (2005) 023001.

A. M. Hillas,R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 35 / 34

Bibliography

Annual review of astronomy and astrophysics. Volume 22. Palo Alto, CA,Annual Reviews, Inc., 1984, p. 425-444.

P. Lipari,arXiv:astro-ph/0605535.

D. Meloni and T. Ohlsson, 2006hep-ph/0612279

W. Rodejoahnn,JCAP01 (2007)029.

R. Tomàs (AHEP Group -IFIC) High energy neutrinos from astrophysical sources JIGSAW 2007 35 / 34

top related