hedin equations and kohn–s ham potentialetsf.polytechnique.fr/system/files/slides.pdffunctions, in...

Post on 17-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

HEDIN EQUATIONS AND KOHN–SHAM POTENTIALIN THE PATH–INTEGRAL FORMALISM

Marco Vanzini

Supervisor: Prof. Luca G. Molinari

Co–Supervisor: Prof. Giovanni Onida

Co–Supervisor: Dr. Guido Fratesi

Milan, July 17th 2014

1 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

2 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

2 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

Diagrammatic theory: G, U , Σ∗, Π∗, Γ.

2 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

Diagrammatic theory: G, U , Σ∗, Π∗, Γ.

Derivation of Hedin equations.

2 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

Diagrammatic theory: G, U , Σ∗, Π∗, Γ.

Derivation of Hedin equations.

Riformulation of density functional theory at finite temperature (Mermin1965) in a path integral approach.

2 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

Diagrammatic theory: G, U , Σ∗, Π∗, Γ.

Derivation of Hedin equations.

Riformulation of density functional theory at finite temperature (Mermin1965) in a path integral approach.

Functional expression for Fxc[n(x)].

2 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

3 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

3 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

3 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

3 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

L. G. Molinari, An introduction to functional methods for many–body Greenfunctions, in CECAM workshop “Green’s function methods: the nextgeneration”, Toulouse, June 2013.

3 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

L. G. Molinari, An introduction to functional methods for many–body Greenfunctions, in CECAM workshop “Green’s function methods: the nextgeneration”, Toulouse, June 2013.

Thermal density functional theory and the path integral:

3 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

L. G. Molinari, An introduction to functional methods for many–body Greenfunctions, in CECAM workshop “Green’s function methods: the nextgeneration”, Toulouse, June 2013.

Thermal density functional theory and the path integral:

R. Fukuda, T. Kotani, Y. Suzuki, S. Yokojima, Density Functional Theorythrough Legendre Transformation, Prog. Theor. Phys. 92 (4), 833 (1994).

3 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

L. G. Molinari, An introduction to functional methods for many–body Greenfunctions, in CECAM workshop “Green’s function methods: the nextgeneration”, Toulouse, June 2013.

Thermal density functional theory and the path integral:

R. Fukuda, T. Kotani, Y. Suzuki, S. Yokojima, Density Functional Theorythrough Legendre Transformation, Prog. Theor. Phys. 92 (4), 833 (1994).

M. Valiev, G. W. Fernando, Path–integral analysis of the exchange–correlationenergy and potential in density–functional theory: Unpolarized systems, Phys.Rev. B 54, 7765 (1996).

3 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas

4 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

4 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

4 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

4 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρ

4 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρFundamental quantity in many body theory:

4 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρFundamental quantity in many body theory:

Thermodynamic equilibrium expectation value of any one–particle operator,e.g. density:

n(x) = Gσσ(x, τ ;x, τ+)

4 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρFundamental quantity in many body theory:

Thermodynamic equilibrium expectation value of any one–particle operator,e.g. density:

n(x) = Gσσ(x, τ ;x, τ+)

Total energy expectation value: Migdal–Galitskii formula;

4 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρFundamental quantity in many body theory:

Thermodynamic equilibrium expectation value of any one–particle operator,e.g. density:

n(x) = Gσσ(x, τ ;x, τ+)

Total energy expectation value: Migdal–Galitskii formula; Excitation energies: Lehmann representation;

4 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)= n(x) =

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)= n(x) =

Kohn–Sham equation− ~2

2m∇2φj(x) + uKS(x)φj(x) = ǫjφj(x)

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)= n(x) =

Kohn–Sham equation− ~2

2m∇2φj(x) + uKS(x)φj(x) = ǫjφj(x)

↑uKS [n(x)] ≡ u(x) + uH [n(x)] + uxc [n(x)]

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)= n(x) =

Kohn–Sham equation− ~2

2m∇2φj(x) + uKS(x)φj(x) = ǫjφj(x)

↑uKS [n(x)] ≡ u(x) + uH [n(x)] + uxc [n(x)]

↓n(x) = 2

j nj |φj(x)|2

5 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

6 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

DFT:φj(x)

6 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

DFT:φj(x)

MBPT:ψ(x), ψ†(y) = δ(x− y)

6 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

DFT:φj(x)

MBPT:ψ(x), ψ†(y) = δ(x− y)

︸ ︷︷ ︸

Both theories find a natural and elegant riformulation in the functional integralformalism, for T = 0 and for T 6= 0 as well.

6 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ):

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

In the second quantization formalism, H − µN is written in terms ofnormal–ordered creation and annihilation operators, ψ†

i ψi or ψ†i ψ

†j ψj ψi:

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

In the second quantization formalism, H − µN is written in terms ofnormal–ordered creation and annihilation operators, ψ†

i ψi or ψ†i ψ

†j ψj ψi:

Coherent States: eigenstates of the annihilation operator:

ψσ(x)|ψ〉 = ψσ(x)|ψ〉

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

In the second quantization formalism, H − µN is written in terms ofnormal–ordered creation and annihilation operators, ψ†

i ψi or ψ†i ψ

†j ψj ψi:

Coherent States: eigenstates of the annihilation operator:

ψσ(x)|ψ〉 = ψσ(x)|ψ〉 ψσ(x) must be a Grassmann number:

ψσ(x)ψρ(y) = −ψρ(y)ψσ(x)

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

In the second quantization formalism, H − µN is written in terms ofnormal–ordered creation and annihilation operators, ψ†

i ψi or ψ†i ψ

†j ψj ψi:

Coherent States: eigenstates of the annihilation operator:

ψσ(x)|ψ〉 = ψσ(x)|ψ〉 ψσ(x) must be a Grassmann number:

ψσ(x)ψρ(y) = −ψρ(y)ψσ(x)

Tr[A] =

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|A|ψ〉

1F− =

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)|ψ〉〈ψ|

7 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)↑

ψσ(x)|ψ(j)〉 = ψ(j)σ (x)|ψ(j)〉

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)↑

ψσ(x)|ψ(j)〉 = ψ(j)σ (x)|ψ(j)〉

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−∑

k

d3x

ψ(k+1)σ (x)·

e

·[

ψ(k+1)σ (x)−ψ

(k)σ (x)

]

+ 1~

~βN

(H−µN

)[ψ

(k+1)σ (x),ψ

(k)σ (x)]

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)↑

ψσ(x)|ψ(j)〉 = ψ(j)σ (x)|ψ(j)〉

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−∑

k

d3x

ψ(k+1)σ (x)·

e

·[

ψ(k+1)σ (x)−ψ

(k)σ (x)

]

+ 1~

~βN

(H−µN

)[ψ

(k+1)σ (x),ψ

(k)σ (x)]

Last step: letting N approach∞:

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)↑

ψσ(x)|ψ(j)〉 = ψ(j)σ (x)|ψ(j)〉

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−∑

k

d3x

ψ(k+1)σ (x)·

e

·[

ψ(k+1)σ (x)−ψ

(k)σ (x)

]

+ 1~

~βN

(H−µN

)[ψ

(k+1)σ (x),ψ

(k)σ (x)]

Last step: letting N approach∞: continuum limit: ψ(k)σ (x)→ ψσ(x, τ)...

8 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

9 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

9 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

9 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

9 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

e−12~

n·U0n =∫

D[ϕ]e−e2

2~ϕ·U

−10 ϕ− ie

~ϕ·n

9 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

e−12~

n·U0n =∫

D[ϕ]e−e2

2~ϕ·U

−10 ϕ− ie

~ϕ·n =

ψ

ψ

ϕ

9 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

e−12~

n·U0n =∫

D[ϕ]e−e2

2~ϕ·U

−10 ϕ− ie

~ϕ·n =

ψ

ψ

ϕ

Z =

D[

ψ]

D [ψ]D [ϕ] exp−1

~S[

ψ,ψ,ϕ]

9 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

e−12~

n·U0n =∫

D[ϕ]e−e2

2~ϕ·U

−10 ϕ− ie

~ϕ·n =

ψ

ψ

ϕ

Z =

D[

ψ]

D [ψ]D [ϕ] exp−1

~S[

ψ,ψ,ϕ]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x)+

+

dx ϕ(x)

(

−1

8π∇

2)

ϕ(x) + ie

dx ψσ(x)ϕ(x)ψσ(x)

9 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

Z[η,η,ρ] = e−1~W[η,η,ρ]

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

Z[η,η,ρ] = e−1~W[η,η,ρ] −→W[η,η,ρ] is the generator of the

connected Green’s functions.

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

Z[η,η,ρ] = e−1~W[η,η,ρ] −→W[η,η,ρ] is the generator of the

connected Green’s functions.

Γ[ψc,ψc,ϕc] =W[η,η,ρ]−∑

σ

∫dx

[η ·ψc + ψc · η + ieρ ·ϕc

],

with ϕc(x) ≡ 〈ϕ(x)〉Z , ..., that is performing a Legendre transform onW

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

Z[η,η,ρ] = e−1~W[η,η,ρ] −→W[η,η,ρ] is the generator of the

connected Green’s functions.

Γ[ψc,ψc,ϕc] =W[η,η,ρ]−∑

σ

∫dx

[η ·ψc + ψc · η + ieρ ·ϕc

],

with ϕc(x) ≡ 〈ϕ(x)〉Z , ..., that is performing a Legendre transform onW−→ Γ[ψc,ψc,ϕc] is the generator of the 1PI Green’s functions.

10 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

11 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

Properties of the Legendre Transform:

δ(2)Γ[ψcl, ψcl,ϕcl]

δψclµ (1)δψclν (2)= ~G−1

µν (1, 2)

δ(2)Γ[ψcl, ψcl,ϕcl]

δϕcl(1)δϕcl(2)= e2U−1(1, 2)

11 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

Properties of the Legendre Transform:

δ(2)Γ[ψcl, ψcl,ϕcl]

δψclµ (1)δψclν (2)= ~G−1

µν (1, 2) = ~

[

G0−1σσ′ (1, 1′)− Σ∗

σσ′ (1, 1′)]

δ(2)Γ[ψcl, ψcl,ϕcl]

δϕcl(1)δϕcl(2)= e2U−1(1, 2) = e2

[

U−10 (1, 1′)−Π∗(1, 1′)

]

11 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

Properties of the Legendre Transform:

δ(2)Γ[ψcl, ψcl,ϕcl]

δψclµ (1)δψclν (2)= ~G−1

µν (1, 2) = ~

[

G0−1σσ′ (1, 1′)− Σ∗

σσ′ (1, 1′)]

δ(2)Γ[ψcl, ψcl,ϕcl]

δϕcl(1)δϕcl(2)= e2U−1(1, 2) = e2

[

U−10 (1, 1′)−Π∗(1, 1′)

]

︸ ︷︷ ︸

G = G0 + G0Σ∗G U = U0 + U0Π∗UDyson equations

11 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

Properties of the Legendre Transform:

δ(2)Γ[ψcl, ψcl,ϕcl]

δψclµ (1)δψclν (2)= ~G−1

µν (1, 2) = ~

[

G0−1σσ′ (1, 1′)− Σ∗

σσ′ (1, 1′)]

δ(2)Γ[ψcl, ψcl,ϕcl]

δϕcl(1)δϕcl(2)= e2U−1(1, 2) = e2

[

U−10 (1, 1′)−Π∗(1, 1′)

]

︸ ︷︷ ︸

G = G0 + G0Σ∗G U = U0 + U0Π∗UDyson equations

= + Σ∗ = + Π∗

11 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

12 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

12 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

12 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

Sold −→ Sold +

dx δψσ(x)[(k(x) + ieϕ(x)

)ψσ(x) + ησ(x)

]

↑k(x, τ) = ~

∂∂τ− ~

2

2m∇2 + u(x)− µ

12 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

Sold −→ Sold +

dx δψσ(x)[(k(x) + ieϕ(x)

)ψσ(x) + ησ(x)

]

↑k(x, τ) = ~

∂∂τ− ~

2

2m∇2 + u(x)− µ

[

k(x) +δWδρ(x)

]δW

δησ(x)− ~

δ(2)Wδρ(x)δησ(x)

+ ησ(x) = 0

12 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

Sold −→ Sold +

dx δψσ(x)[(k(x) + ieϕ(x)

)ψσ(x) + ησ(x)

]

↑k(x, τ) = ~

∂∂τ− ~

2

2m∇2 + u(x)− µ

[

k(x) +δWδρ(x)

]δW

δησ(x)− ~

δ(2)Wδρ(x)δησ(x)

+ ησ(x) = 0

Shift of the field ϕ(x): ϕ(x)→ ϕ(x) + δϕ(x)

12 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

Sold −→ Sold +

dx δψσ(x)[(k(x) + ieϕ(x)

)ψσ(x) + ησ(x)

]

↑k(x, τ) = ~

∂∂τ− ~

2

2m∇2 + u(x)− µ

[

k(x) +δWδρ(x)

]δW

δησ(x)− ~

δ(2)Wδρ(x)δησ(x)

+ ησ(x) = 0

Shift of the field ϕ(x): ϕ(x)→ ϕ(x) + δϕ(x)

− 1

4πie∇2 δW

δρ(x)− ie~ δ(2)W

δησ(x)δησ(x+)+ ieρ(x) = 0

12 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations

13 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

13 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

13 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

13 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

Σ∗σρ(1, 2)Gρσ′ (2, 1′) +

δ

δρ(1)Gσσ′ (1, 1′)− i e

~ϕcl(1)Gσσ′ (1, 1′) = 0

13 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

Σ∗σρ(1, 2)Gρσ′ (2, 1′) +

δ

δρ(1)Gσσ′ (1, 1′)− i e

~ϕcl(1)Gσσ′ (1, 1′) = 0

Apply functional inverse (againW(2)η1η2

Γ(2)

ψ2ψ3= −δ13):

13 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

Σ∗σρ(1, 2)Gρσ′ (2, 1′) +

δ

δρ(1)Gσσ′ (1, 1′)− i e

~ϕcl(1)Gσσ′ (1, 1′) = 0

Apply functional inverse (againW(2)η1η2

Γ(2)

ψ2ψ3= −δ13):

Σ∗σσ′(1, 1

′) = ie

~ϕcl(1)δσσ′δ(1− 1′)+

− 1

~Gσρ(1, 2)

δϕcl(3)

δρ(1)

δ(3)Γ

δϕcl(3)δψclρ (2)δψclσ′ (1′)

13 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

Σ∗σρ(1, 2)Gρσ′ (2, 1′) +

δ

δρ(1)Gσσ′ (1, 1′)− i e

~ϕcl(1)Gσσ′ (1, 1′) = 0

Apply functional inverse (againW(2)η1η2

Γ(2)

ψ2ψ3= −δ13):

Σ∗σσ′(1, 1

′) = ie

~ϕcl(1)δσσ′δ(1− 1′)+

− 1

~Gσρ(1, 2)

δϕcl(3)

δρ(1)

δ(3)Γ

δϕcl(3)δψclρ (2)δψclσ′ (1′)

Hedin equation for Σ∗!13 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

14 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper self–energy Σ∗σσ′ (1, 1

′):

Σ∗σσ′ (1, 1

′) =1

~δσσ′δ(1− 1′)UH(1) + Σ∗

xcσσ′(1, 1′)

14 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper self–energy Σ∗σσ′ (1, 1

′):

Σ∗σσ′ (1, 1

′) =1

~δσσ′δ(1− 1′)UH(1) + Σ∗

xcσσ′(1, 1′)

Hartree insertion (tadpole):

1

~UH(1) =

1

~

d2 U0(1, 2)Gρρ(2, 2+)

14 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper self–energy Σ∗σσ′ (1, 1

′):

Σ∗σσ′ (1, 1

′) =1

~δσσ′δ(1− 1′)UH(1) + Σ∗

xcσσ′(1, 1′)

Hartree insertion (tadpole):

1

~UH(1) =

1

~

d2 U0(1, 2)Gρρ(2, 2+)

Exchange–correlation term:

Σ∗xcσσ′

(1, 1′) = −

1

~

d2d3 Gσρ(1, 2)U(3, 1)Γσ′ρ(1′, 2, 3)

14 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper self–energy Σ∗σσ′ (1, 1

′):

Σ∗σσ′ (1, 1

′) =1

~δσσ′δ(1− 1′)UH(1) + Σ∗

xcσσ′(1, 1′)

Hartree insertion (tadpole):

1

~UH(1) =

1

~

d2 U0(1, 2)Gρρ(2, 2+)

Exchange–correlation term:

Σ∗xcσσ′

(1, 1′) = −

1

~

d2d3 Gσρ(1, 2)U(3, 1)Γσ′ρ(1′, 2, 3)

1′

Σ∗(1; 1′)

1

=1 ≡ 1′

2+

Γ

1′

1

32

14 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

15 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

Π∗(1, 1′) =1

~Gσµ(1, 2)Gνσ(2′, 1+)Γνµ(2

′, 2, 1′)

15 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

Π∗(1, 1′) =1

~Gσµ(1, 2)Gνσ(2′, 1+)Γνµ(2

′, 2, 1′)

Π∗(1, 1′) = Γ1′ 1

2′

2

15 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

Π∗(1, 1′) =1

~Gσµ(1, 2)Gνσ(2′, 1+)Γνµ(2

′, 2, 1′)

Π∗(1, 1′) = Γ1′ 1

2′

2

Hedin equation for the dressed vertex Γµν(1, 2, 3):

15 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

Π∗(1, 1′) =1

~Gσµ(1, 2)Gνσ(2′, 1+)Γνµ(2

′, 2, 1′)

Π∗(1, 1′) = Γ1′ 1

2′

2

Hedin equation for the dressed vertex Γµν(1, 2, 3):

Γµν(1, 2, 3) =1 ≡ 2 ≡ 3

+ ΓδΣ∗xcδG

1

23 4′

5′

4

5

15 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations: approximations

16 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations: approximations

Hartree–Fock approximation:

Γ1′

1≈

1′

1

16 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations: approximations

Hartree–Fock approximation:

Γ1′

1≈

1′

1

Random–Phase approximation:

Γ1′

1≈

1′

1

16 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations: approximations

Hartree–Fock approximation:

Γ1′

1≈

1′

1

Random–Phase approximation:

Γ1′

1≈

1′

1

GW approximation:

Γ1′

1≈

1′

1

16 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperature

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

↓ Kohn–Sham approach: F [n(x)] = Ffree + EH + Fxc:

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

↓ Kohn–Sham approach: F [n(x)] = Ffree + EH + Fxc:

EH [n(x)] = e2

2

d3xd3yn(x)n(y)|x−y|

“Hartree mean field”.

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

↓ Kohn–Sham approach: F [n(x)] = Ffree + EH + Fxc:

EH [n(x)] = e2

2

d3xd3yn(x)n(y)|x−y|

“Hartree mean field”.

uxc(x) ≡δFxc[n(x)]δn(x)

exchange–correlation potential.

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

↓ Kohn–Sham approach: F [n(x)] = Ffree + EH + Fxc:

EH [n(x)] = e2

2

d3xd3yn(x)n(y)|x−y|

“Hartree mean field”.

uxc(x) ≡δFxc[n(x)]δn(x)

exchange–correlation potential.

Ω =∑

i

niǫi − TSs − µN − EH [n(x)]−∫

d3x n(x)uxc(x) + Fxc[n(x)]

(

n(x) = n∗(x))

17 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approach

18 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

18 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

18 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

18 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

18 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

But our actual system corresponds to θ(x) = 0 (remember Z = e−βΩ):

δΓ [n]

δn(x)

∣∣∣∣θ=0

= 0

18 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

But our actual system corresponds to θ(x) = 0 (remember Z = e−βΩ):

δΓ [n]

δn(x)

∣∣∣∣θ=0

= 0 =⇒ δΩ [n]

δn(x)

∣∣∣∣n=n∗

= 0 DFT!

18 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

But our actual system corresponds to θ(x) = 0 (remember Z = e−βΩ):

δΓ [n]

δn(x)

∣∣∣∣θ=0

= 0 =⇒ δΩ [n]

δn(x)

∣∣∣∣n=n∗

= 0 DFT!

Moreover it is possible to prove that:

18 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

But our actual system corresponds to θ(x) = 0 (remember Z = e−βΩ):

δΓ [n]

δn(x)

∣∣∣∣θ=0

= 0 =⇒ δΩ [n]

δn(x)

∣∣∣∣n=n∗

= 0 DFT!

Moreover it is possible to prove that: If the source is real, n∗ is a minimum (W is concave, Γ is convex). The Mermin decomposition holds: Ω[n(x)] = F [n(x)] +

d3x n(x)u(x).

18 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form

19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

Z = eβEH [n(x)]

D [ϕ] e−1~[∫

dxϕ(x)(− 18π

∇2)ϕ(x)−ie∫

dxϕ(x)n(x)−~Tr ln[...]]

19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

Z = eβEH [n(x)]

D [ϕ] e−1~[∫

dxϕ(x)(− 18π

∇2)ϕ(x)−ie∫

dxϕ(x)n(x)−~Tr ln[...]]

With this shift, a first separation occurs (Z = e−βΩ):(remember Kohn–Sham formula: Ω =

niǫi − TSs − µN − EH −∫

n · uxc + Fxc)

19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

Z = eβEH [n(x)]

D [ϕ] e−1~[∫

dxϕ(x)(− 18π

∇2)ϕ(x)−ie∫

dxϕ(x)n(x)−~Tr ln[...]]

With this shift, a first separation occurs (Z = e−βΩ):(remember Kohn–Sham formula: Ω =

niǫi − TSs − µN − EH −∫

n · uxc + Fxc)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)+ieϕ(x)

)δ(x,y)

]]

19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

Z = eβEH [n(x)]

D [ϕ] e−1~[∫

dxϕ(x)(− 18π

∇2)ϕ(x)−ie∫

dxϕ(x)n(x)−~Tr ln[...]]

With this shift, a first separation occurs (Z = e−βΩ):(remember Kohn–Sham formula: Ω =

niǫi − TSs − µN − EH −∫

n · uxc + Fxc)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)+ieϕ(x)

)δ(x,y)

]]

Price for EH : more difficult interaction term!19 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

20 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)

20 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

20 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

20 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

20 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

Ω [n(x)] = −EH [n(x)]− 1

βTr ln(−G−1

KS)−∫

d3x n(x)uxc(x)+

− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

20 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

Ω [n(x)] = −EH [n(x)]− 1

βTr ln(−G−1

KS)−∫

d3x n(x)uxc(x)+

− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

The very last step:

20 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

Ω [n(x)] = −EH [n(x)]− 1

βTr ln(−G−1

KS)−∫

d3x n(x)uxc(x)+

− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

The very last step: − 1βTr ln(−G−1

KS) =∑

i niǫi − TSs − µN

20 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

Ω [n(x)] = −EH [n(x)]− 1

βTr ln(−G−1

KS)−∫

d3x n(x)uxc(x)+

− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

The very last step: − 1βTr ln(−G−1

KS) =∑

i niǫi − TSs − µN Price: really difficult interaction term!

20 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

21 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

21 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

21 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove:

21 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams.

21 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams. Fxc and uxc are not independent quantities: uxc(x) = δFxc/δn(x)

21 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams. Fxc and uxc are not independent quantities: uxc(x) = δFxc/δn(x)

The Sham–Schlüter equation holds

21 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams. Fxc and uxc are not independent quantities: uxc(x) = δFxc/δn(x)

The Sham–Schlüter equation holds Non–trivial first–order expansion: exchange “Fock” contribution:

F(1)xc ≡ Ex = −

e2

2

d3xd

3yn(x,y)n(y,x)

|x − y|=

21 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams. Fxc and uxc are not independent quantities: uxc(x) = δFxc/δn(x)

The Sham–Schlüter equation holds Non–trivial first–order expansion: exchange “Fock” contribution:

F(1)xc ≡ Ex = −

e2

2

d3xd

3yn(x,y)n(y,x)

|x − y|=

Besides: besides RPA as far as the interaction is concerned,besides One–Loop–Expansion as far as the integral is concerned...

21 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing.

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory.

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations.

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework.

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature.

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

Outlooks:

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

Outlooks: Expansion of Fxc besides the first non–trivial term (exchange

contribution).

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

Outlooks: Expansion of Fxc besides the first non–trivial term (exchange

contribution). TDDFT in a path integral approach.

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

Outlooks: Expansion of Fxc besides the first non–trivial term (exchange

contribution). TDDFT in a path integral approach.

Thank you for your attention

22 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

23 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

23 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

23 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

Clifford algebra: introduce a derivative: ∂∂θi

θj = δij

23 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

Clifford algebra: introduce a derivative: ∂∂θi

θj = δij

[∂

∂θi, θj

]

+

= δij

[∂

∂θi,∂

∂θj

]

+

= 0

23 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

Clifford algebra: introduce a derivative: ∂∂θi

θj = δij

[∂

∂θi, θj

]

+

= δij

[∂

∂θi,∂

∂θj

]

+

= 0

Introduce an integral (Berezin), with two main properties: linearity andinvariance under a shift of the integration variable:

dθ = 0

dθ θ = 1

23 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

Clifford algebra: introduce a derivative: ∂∂θi

θj = δij

[∂

∂θi, θj

]

+

= δij

[∂

∂θi,∂

∂θj

]

+

= 0

Introduce an integral (Berezin), with two main properties: linearity andinvariance under a shift of the integration variable:

dθ = 0

dθ θ = 1

For example:N∏

i=1

dθidθie−θiAijθj = detA

(while in the bosonic case one has∏Ni=1

R

dz∗i dzi2πi

e−z∗i Aijzj = 1

detA)

23 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

24 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

24 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

24 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

24 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]

24 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

24 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

In this way no more than just quadratic forms!

24 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

In this way no more than just quadratic forms! Price: a new bosonic field appear...

24 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

In this way no more than just quadratic forms! Price: a new bosonic field appear... Lint = ieϕ(x, τ)

σ ψσ(x, τ)ψσ(x, τ)

LQED = ecAµ(x, t)∑

ab ψa(x, t)γµabψb(x, t)

24 / 24

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

In this way no more than just quadratic forms! Price: a new bosonic field appear... Lint = ieϕ(x, τ)

σ ψσ(x, τ)ψσ(x, τ)

LQED = ecAµ(x, t)∑

ab ψa(x, t)γµabψb(x, t)

Lem = − 116πFµνF

µν = 18π

[

|E|2 − |B|2]

= 18π [∇ϕ]2

24 / 24

top related