hedin equations and kohn–s ham potentialetsf.polytechnique.fr/system/files/slides.pdffunctions, in...

202
HEDIN EQUATIONS AND KOHN–SHAM POTENTIAL IN THE PATHINTEGRAL FORMALISM Marco Vanzini General overview Many–particle–system Construction of the path–integral Hedin equations Density Functional Theory DFT & path–integral Conclusions HEDIN EQUATIONS AND KOHN–SHAM POTENTIAL IN THE PATHINTEGRAL FORMALISM Marco Vanzini Supervisor: Prof. Luca G. Molinari Co–Supervisor: Prof. Giovanni Onida Co–Supervisor: Dr. Guido Fratesi Milan, July 17th 2014 1 / 24

Upload: others

Post on 17-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

HEDIN EQUATIONS AND KOHN–SHAM POTENTIALIN THE PATH–INTEGRAL FORMALISM

Marco Vanzini

Supervisor: Prof. Luca G. Molinari

Co–Supervisor: Prof. Giovanni Onida

Co–Supervisor: Dr. Guido Fratesi

Milan, July 17th 2014

1 / 24

Page 2: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

2 / 24

Page 3: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

2 / 24

Page 4: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

Diagrammatic theory: G, U , Σ∗, Π∗, Γ.

2 / 24

Page 5: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

Diagrammatic theory: G, U , Σ∗, Π∗, Γ.

Derivation of Hedin equations.

2 / 24

Page 6: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

Diagrammatic theory: G, U , Σ∗, Π∗, Γ.

Derivation of Hedin equations.

Riformulation of density functional theory at finite temperature (Mermin1965) in a path integral approach.

2 / 24

Page 7: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Goals and overview

Path integral formulation for Z = Tr[

e−β(H−µN)]

.

Diagrammatic theory: G, U , Σ∗, Π∗, Γ.

Derivation of Hedin equations.

Riformulation of density functional theory at finite temperature (Mermin1965) in a path integral approach.

Functional expression for Fxc[n(x)].

2 / 24

Page 8: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

3 / 24

Page 9: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

3 / 24

Page 10: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

3 / 24

Page 11: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

3 / 24

Page 12: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

L. G. Molinari, An introduction to functional methods for many–body Greenfunctions, in CECAM workshop “Green’s function methods: the nextgeneration”, Toulouse, June 2013.

3 / 24

Page 13: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

L. G. Molinari, An introduction to functional methods for many–body Greenfunctions, in CECAM workshop “Green’s function methods: the nextgeneration”, Toulouse, June 2013.

Thermal density functional theory and the path integral:

3 / 24

Page 14: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

L. G. Molinari, An introduction to functional methods for many–body Greenfunctions, in CECAM workshop “Green’s function methods: the nextgeneration”, Toulouse, June 2013.

Thermal density functional theory and the path integral:

R. Fukuda, T. Kotani, Y. Suzuki, S. Yokojima, Density Functional Theorythrough Legendre Transformation, Prog. Theor. Phys. 92 (4), 833 (1994).

3 / 24

Page 15: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

References

Hedin equations and the path integral:

C. Itzykson e J. B. Zuber, Quantum Field Theory, McGraw–Hill (1980).

L. Hedin, New Method for Calculating the One–Particle Green’s Function withApplication to the Electron–Gas Problem, Phys. Rev. 139 (3A) A796–A823(1965).

L. G. Molinari, An introduction to functional methods for many–body Greenfunctions, in CECAM workshop “Green’s function methods: the nextgeneration”, Toulouse, June 2013.

Thermal density functional theory and the path integral:

R. Fukuda, T. Kotani, Y. Suzuki, S. Yokojima, Density Functional Theorythrough Legendre Transformation, Prog. Theor. Phys. 92 (4), 833 (1994).

M. Valiev, G. W. Fernando, Path–integral analysis of the exchange–correlationenergy and potential in density–functional theory: Unpolarized systems, Phys.Rev. B 54, 7765 (1996).

3 / 24

Page 16: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas

4 / 24

Page 17: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |

Page 18: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

4 / 24

Page 19: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

4 / 24

Page 20: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

4 / 24

Page 21: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρ

4 / 24

Page 22: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρFundamental quantity in many body theory:

4 / 24

Page 23: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρFundamental quantity in many body theory:

Thermodynamic equilibrium expectation value of any one–particle operator,e.g. density:

n(x) = Gσσ(x, τ ;x, τ+)

4 / 24

Page 24: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρFundamental quantity in many body theory:

Thermodynamic equilibrium expectation value of any one–particle operator,e.g. density:

n(x) = Gσσ(x, τ ;x, τ+)

Total energy expectation value: Migdal–Galitskii formula;

4 / 24

Page 25: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The system: the electron gas Hamiltonian: N interacting electrons in an external potential u(x) (atoms,

molecules, solids, ...):

H =N∑

i=1

(p2i

2m+ u(xi)

)

+1

2

N∑

i,j=1(i 6=j)

e2

|xi − xj |=

=

V

d3x ψ†σ(x)

(

− ~2

2m∇2 + u(x)

)

ψσ(x)+

+1

2

V

d3x d3x′ ψ†σ(x)ψ

†σ′ (x

′)e2

|x− x′| ψσ′ (x′)ψσ(x)

Associated Schrödinger equation:

Hφ(k)σ1...σN (x1...xN ) = Ekφ

(k)σ1...σN (x1...xN )

One–particle thermal Green’s function:

Gσσ′ (x, τ ;x′, τ ′) := −〈T ψσ(x, τ)ψ†σ′ (x

′, τ ′)〉ρFundamental quantity in many body theory:

Thermodynamic equilibrium expectation value of any one–particle operator,e.g. density:

n(x) = Gσσ(x, τ ;x, τ+)

Total energy expectation value: Migdal–Galitskii formula; Excitation energies: Lehmann representation;

4 / 24

Page 26: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

5 / 24

Page 27: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

5 / 24

Page 28: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

5 / 24

Page 29: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

5 / 24

Page 30: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

5 / 24

Page 31: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

5 / 24

Page 32: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 / 24

Page 33: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

5 / 24

Page 34: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

5 / 24

Page 35: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

5 / 24

Page 36: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)

5 / 24

Page 37: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)= n(x) =

5 / 24

Page 38: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)= n(x) =

Kohn–Sham equation− ~2

2m∇2φj(x) + uKS(x)φj(x) = ǫjφj(x)

5 / 24

Page 39: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)= n(x) =

Kohn–Sham equation− ~2

2m∇2φj(x) + uKS(x)φj(x) = ǫjφj(x)

↑uKS [n(x)] ≡ u(x) + uH [n(x)] + uxc [n(x)]

5 / 24

Page 40: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT Many–body–perturbation–theory: Hedin equations (1965):

G11′ = G011′ + G

012Σ

∗22′G2′1′

Σ∗11′ = 1

~δ11′U

012G22+ − 1

~G12Γ1′23U31

U11′ = U011′ + U

012Π

∗22′U2′1′

Π∗11′ = 1

~G12Γ2′21′G2′1+

Γ123 = δ12δ23 + Γ5′4′3G5′5

δΣ∗xc21

δG45

G44′

5 integro–differential equations for the 5 quantities G, U , Σ∗, Π∗, Γ

Density functional theory (Hohenberg–Kohn, 1964; Mermin, 1965;Kohn–Sham, 1965): ground–state / Gibbs state:

Many Body System:N interacting electronsin an external potential

u(x)↓

G(1, 1+)

⇐⇒

Kohn–Sham System:N free electronsin an effective potentialuKS(x)↓GKS(1, 1+)= n(x) =

Kohn–Sham equation− ~2

2m∇2φj(x) + uKS(x)φj(x) = ǫjφj(x)

↑uKS [n(x)] ≡ u(x) + uH [n(x)] + uxc [n(x)]

↓n(x) = 2

j nj |φj(x)|2

5 / 24

Page 41: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

6 / 24

Page 42: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

DFT:φj(x)

6 / 24

Page 43: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

DFT:φj(x)

MBPT:ψ(x), ψ†(y) = δ(x− y)

6 / 24

Page 44: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations and DFT

DFT:φj(x)

MBPT:ψ(x), ψ†(y) = δ(x− y)

︸ ︷︷ ︸

Both theories find a natural and elegant riformulation in the functional integralformalism, for T = 0 and for T 6= 0 as well.

6 / 24

Page 45: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ):

7 / 24

Page 46: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

7 / 24

Page 47: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)

7 / 24

Page 48: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

7 / 24

Page 49: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

7 / 24

Page 50: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

7 / 24

Page 51: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉

7 / 24

Page 52: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

7 / 24

Page 53: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

In the second quantization formalism, H − µN is written in terms ofnormal–ordered creation and annihilation operators, ψ†

i ψi or ψ†i ψ

†j ψj ψi:

7 / 24

Page 54: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

In the second quantization formalism, H − µN is written in terms ofnormal–ordered creation and annihilation operators, ψ†

i ψi or ψ†i ψ

†j ψj ψi:

Coherent States: eigenstates of the annihilation operator:

ψσ(x)|ψ〉 = ψσ(x)|ψ〉

7 / 24

Page 55: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

In the second quantization formalism, H − µN is written in terms ofnormal–ordered creation and annihilation operators, ψ†

i ψi or ψ†i ψ

†j ψj ψi:

Coherent States: eigenstates of the annihilation operator:

ψσ(x)|ψ〉 = ψσ(x)|ψ〉 ψσ(x) must be a Grassmann number:

ψσ(x)ψρ(y) = −ψρ(y)ψσ(x)

7 / 24

Page 56: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integral: coherent statesGrand canonical ensemble (T, V, µ): partition function Z:

Z(T, V, µ) = Tr[

e−β(H−µN)]

it = ~β←−−−−→ 〈x, t|x0, 0〉 = 〈x|e−i~Ht|x0〉

transition amplitude (QM)→ t →

(

tN, ..., t

N

)

→ 〈φ| A |ψ〉 =∫

dqdq′φ∗(q) 〈q| A |q′〉ψ(q′)

→∫

dq|q〉〈q| =∫

dp|p〉〈p| = 1

→ K(p) |p〉 = K(p) |p〉, V (q) |q〉 = V (q) |q〉↓

〈x, t|x0, 0〉 =

x(0)=x0x(t)=x

D[x(t′)]D[p(t

′)]e

i~

∫ t0 dt

′[

p(t′)·∂x(t′)∂t′

−H(p(t′),x(t′))

]

Feynman phase–space path integral (QM)

In the second quantization formalism, H − µN is written in terms ofnormal–ordered creation and annihilation operators, ψ†

i ψi or ψ†i ψ

†j ψj ψi:

Coherent States: eigenstates of the annihilation operator:

ψσ(x)|ψ〉 = ψσ(x)|ψ〉 ψσ(x) must be a Grassmann number:

ψσ(x)ψρ(y) = −ψρ(y)ψσ(x)

Tr[A] =

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|A|ψ〉

1F− =

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)|ψ〉〈ψ|

7 / 24

Page 57: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

8 / 24

Page 58: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=

8 / 24

Page 59: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

8 / 24

Page 60: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

8 / 24

Page 61: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

8 / 24

Page 62: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

8 / 24

Page 63: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)

8 / 24

Page 64: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)↑

ψσ(x)|ψ(j)〉 = ψ(j)σ (x)|ψ(j)〉

8 / 24

Page 65: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)↑

ψσ(x)|ψ(j)〉 = ψ(j)σ (x)|ψ(j)〉

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−∑

k

d3x

ψ(k+1)σ (x)·

e

·[

ψ(k+1)σ (x)−ψ

(k)σ (x)

]

+ 1~

~βN

(H−µN

)[ψ

(k+1)σ (x),ψ

(k)σ (x)]

8 / 24

Page 66: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)↑

ψσ(x)|ψ(j)〉 = ψ(j)σ (x)|ψ(j)〉

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−∑

k

d3x

ψ(k+1)σ (x)·

e

·[

ψ(k+1)σ (x)−ψ

(k)σ (x)

]

+ 1~

~βN

(H−µN

)[ψ

(k+1)σ (x),ψ

(k)σ (x)]

Last step: letting N approach∞:

8 / 24

Page 67: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Construction of the path–integralUsing coherent states to get a functional expression for Z:

Z = Tr[

e−β(H−µN)]

=↑

Tr[A] =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)〈−ψ|A|ψ〉

Z =

∫∏

σ,x

dψσ(x)dψσ(x) e−∫

d3x ψσ(x)ψσ(x)〈−ψ|e− 1~(~β)K |ψ〉

Z = limN→∞

... 〈−ψ|e− 1~

~βNK ... e−

1~

~βNK ... e−

1~

~βNK |ψ〉

↑ ↑ ↑ ↑1F− 1F−

(

1 =

σ,xdψσ(x)dψσ(x) e

−∫

dx ψσ(x)ψσ(x)|ψ〉〈ψ|

)

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−

k

d3x ψ(k)σ (x)ψ

(k)σ (x)·

·N−1∏

j=0

〈ψ(j+1)|e− 1~

~βNK |ψ(j)〉

∣∣∣∣∣∣ψ(0)=−ψ(N)

ψ(0)=−ψ(N)↑

ψσ(x)|ψ(j)〉 = ψ(j)σ (x)|ψ(j)〉

Z =

N∏

k=1

∫∏

σ,x

dψ(k)σ (x)dψ

(k)σ (x)

e−∑

k

d3x

ψ(k+1)σ (x)·

e

·[

ψ(k+1)σ (x)−ψ

(k)σ (x)

]

+ 1~

~βN

(H−µN

)[ψ

(k+1)σ (x),ψ

(k)σ (x)]

Last step: letting N approach∞: continuum limit: ψ(k)σ (x)→ ψσ(x, τ)...

8 / 24

Page 68: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

9 / 24

Page 69: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

9 / 24

Page 70: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

9 / 24

Page 71: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

9 / 24

Page 72: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

e−12~

n·U0n =∫

D[ϕ]e−e2

2~ϕ·U

−10 ϕ− ie

~ϕ·n

9 / 24

Page 73: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

e−12~

n·U0n =∫

D[ϕ]e−e2

2~ϕ·U

−10 ϕ− ie

~ϕ·n =

ψ

ψ

ϕ

9 / 24

Page 74: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

e−12~

n·U0n =∫

D[ϕ]e−e2

2~ϕ·U

−10 ϕ− ie

~ϕ·n =

ψ

ψ

ϕ

Z =

D[

ψ]

D [ψ]D [ϕ] exp−1

~S[

ψ,ψ,ϕ]

9 / 24

Page 75: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Path–integral form of Z

Z =

D[ψσ(x, τ)

]D [ψσ(x, τ)] exp−

1

~S[ψ,ψ

]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x) +

+1

2

dxdy ψσ(x)ψρ(y)e2

|x − y|ψρ(y)ψσ(x)

The very last step:Hubbard–Stratonovich transformation:from a four–fermion–fields interactionto a two–fermion–fields plusan auxiliary–boson–field one (∼ QED):

e−12~

n·U0n =∫

D[ϕ]e−e2

2~ϕ·U

−10 ϕ− ie

~ϕ·n =

ψ

ψ

ϕ

Z =

D[

ψ]

D [ψ]D [ϕ] exp−1

~S[

ψ,ψ,ϕ]

S[ψ, ψ,ϕ] =

dx ψσ(x)

(

~∂

∂τ−

~2

2m∇

2+ u(x) − µ

)

ψσ(x)+

+

dx ϕ(x)

(

−1

8π∇

2)

ϕ(x) + ie

dx ψσ(x)ϕ(x)ψσ(x)

9 / 24

Page 76: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals

10 / 24

Page 77: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z

Page 78: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

10 / 24

Page 79: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z

Page 80: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

10 / 24

Page 81: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

10 / 24

Page 82: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

10 / 24

Page 83: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

10 / 24

Page 84: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

10 / 24

Page 85: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

Z[η,η,ρ] = e−1~W[η,η,ρ]

10 / 24

Page 86: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

Z[η,η,ρ] = e−1~W[η,η,ρ] −→W[η,η,ρ] is the generator of the

connected Green’s functions.

10 / 24

Page 87: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

Z[η,η,ρ] = e−1~W[η,η,ρ] −→W[η,η,ρ] is the generator of the

connected Green’s functions.

Γ[ψc,ψc,ϕc] =W[η,η,ρ]−∑

σ

∫dx

[η ·ψc + ψc · η + ieρ ·ϕc

],

with ϕc(x) ≡ 〈ϕ(x)〉Z , ..., that is performing a Legendre transform onW

10 / 24

Page 88: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Two–points functions and generating functionals Electronic Propagator:

−Gσσ′ (x;x′) = 〈ψσ(x)ψσ′ (x′)〉Z = xx′

Dressed Interaction (∼ boson propagator):

U(x;x′) = e2

~〈ϕ(x)ϕ(x′)〉Z = xx′

Linear coupling with external sources ησ(x), ησ(x), ρ(x) (Schwinger, ‘50):fields become derivatives...

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

↓Ssorg =

dx[

ησ(x)ψσ(x) + ψσ(x)ησ(x) + ieρ(x)ϕ(x)]

Gσσ′ (x; x′) = −

~2

Z

δ(2)Z[η,η,ρ]

δησ1 (1)δησ1′(1′)

U(x; x′) = −

~

Z

δ(2)Z[η,η,ρ]

δρ(1)δρ(1′)

Z[η,η,ρ] is the generator of the proper Green’s functions.

Z[η,η,ρ] = e−1~W[η,η,ρ] −→W[η,η,ρ] is the generator of the

connected Green’s functions.

Γ[ψc,ψc,ϕc] =W[η,η,ρ]−∑

σ

∫dx

[η ·ψc + ψc · η + ieρ ·ϕc

],

with ϕc(x) ≡ 〈ϕ(x)〉Z , ..., that is performing a Legendre transform onW−→ Γ[ψc,ψc,ϕc] is the generator of the 1PI Green’s functions.

10 / 24

Page 89: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

11 / 24

Page 90: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

Properties of the Legendre Transform:

δ(2)Γ[ψcl, ψcl,ϕcl]

δψclµ (1)δψclν (2)= ~G−1

µν (1, 2)

δ(2)Γ[ψcl, ψcl,ϕcl]

δϕcl(1)δϕcl(2)= e2U−1(1, 2)

11 / 24

Page 91: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

Properties of the Legendre Transform:

δ(2)Γ[ψcl, ψcl,ϕcl]

δψclµ (1)δψclν (2)= ~G−1

µν (1, 2) = ~

[

G0−1σσ′ (1, 1′)− Σ∗

σσ′ (1, 1′)]

δ(2)Γ[ψcl, ψcl,ϕcl]

δϕcl(1)δϕcl(2)= e2U−1(1, 2) = e2

[

U−10 (1, 1′)−Π∗(1, 1′)

]

11 / 24

Page 92: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

Properties of the Legendre Transform:

δ(2)Γ[ψcl, ψcl,ϕcl]

δψclµ (1)δψclν (2)= ~G−1

µν (1, 2) = ~

[

G0−1σσ′ (1, 1′)− Σ∗

σσ′ (1, 1′)]

δ(2)Γ[ψcl, ψcl,ϕcl]

δϕcl(1)δϕcl(2)= e2U−1(1, 2) = e2

[

U−10 (1, 1′)−Π∗(1, 1′)

]

︸ ︷︷ ︸

G = G0 + G0Σ∗G U = U0 + U0Π∗UDyson equations

11 / 24

Page 93: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Self–Energy and Proper Polarization

Properties of the Legendre Transform:

δ(2)Γ[ψcl, ψcl,ϕcl]

δψclµ (1)δψclν (2)= ~G−1

µν (1, 2) = ~

[

G0−1σσ′ (1, 1′)− Σ∗

σσ′ (1, 1′)]

δ(2)Γ[ψcl, ψcl,ϕcl]

δϕcl(1)δϕcl(2)= e2U−1(1, 2) = e2

[

U−10 (1, 1′)−Π∗(1, 1′)

]

︸ ︷︷ ︸

G = G0 + G0Σ∗G U = U0 + U0Π∗UDyson equations

= + Σ∗ = + Π∗

11 / 24

Page 94: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

12 / 24

Page 95: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

12 / 24

Page 96: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

12 / 24

Page 97: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

Sold −→ Sold +

dx δψσ(x)[(k(x) + ieϕ(x)

)ψσ(x) + ησ(x)

]

↑k(x, τ) = ~

∂∂τ− ~

2

2m∇2 + u(x)− µ

12 / 24

Page 98: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

Sold −→ Sold +

dx δψσ(x)[(k(x) + ieϕ(x)

)ψσ(x) + ησ(x)

]

↑k(x, τ) = ~

∂∂τ− ~

2

2m∇2 + u(x)− µ

[

k(x) +δWδρ(x)

]δW

δησ(x)− ~

δ(2)Wδρ(x)δησ(x)

+ ησ(x) = 0

12 / 24

Page 99: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

Sold −→ Sold +

dx δψσ(x)[(k(x) + ieϕ(x)

)ψσ(x) + ησ(x)

]

↑k(x, τ) = ~

∂∂τ− ~

2

2m∇2 + u(x)− µ

[

k(x) +δWδρ(x)

]δW

δησ(x)− ~

δ(2)Wδρ(x)δησ(x)

+ ησ(x) = 0

Shift of the field ϕ(x): ϕ(x)→ ϕ(x) + δϕ(x)

12 / 24

Page 100: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Schwinger–Dyson equations → Hedin equations

Z [η,η,ρ] =

D[ψ]D [ψ]D [ϕ] e−

1~S+Ssorg [η,η,ρ]

Infinitesimal shift of the fields −→ Z [η,η,ρ] doesn’t change!−→ Schwinger–Dyson equations (’50):

equations of motion forthe generating functionals.

Shift of the field ψσ(x): ψσ(x)→ ψσ(x) + δψσ(x)

Sold −→ Sold +

dx δψσ(x)[(k(x) + ieϕ(x)

)ψσ(x) + ησ(x)

]

↑k(x, τ) = ~

∂∂τ− ~

2

2m∇2 + u(x)− µ

[

k(x) +δWδρ(x)

]δW

δησ(x)− ~

δ(2)Wδρ(x)δησ(x)

+ ησ(x) = 0

Shift of the field ϕ(x): ϕ(x)→ ϕ(x) + δϕ(x)

− 1

4πie∇2 δW

δρ(x)− ie~ δ(2)W

δησ(x)δησ(x+)+ ieρ(x) = 0

12 / 24

Page 101: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations

13 / 24

Page 102: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

13 / 24

Page 103: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

13 / 24

Page 104: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

13 / 24

Page 105: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

Σ∗σρ(1, 2)Gρσ′ (2, 1′) +

δ

δρ(1)Gσσ′ (1, 1′)− i e

~ϕcl(1)Gσσ′ (1, 1′) = 0

13 / 24

Page 106: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

Σ∗σρ(1, 2)Gρσ′ (2, 1′) +

δ

δρ(1)Gσσ′ (1, 1′)− i e

~ϕcl(1)Gσσ′ (1, 1′) = 0

Apply functional inverse (againW(2)η1η2

Γ(2)

ψ2ψ3= −δ13):

13 / 24

Page 107: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

Σ∗σρ(1, 2)Gρσ′ (2, 1′) +

δ

δρ(1)Gσσ′ (1, 1′)− i e

~ϕcl(1)Gσσ′ (1, 1′) = 0

Apply functional inverse (againW(2)η1η2

Γ(2)

ψ2ψ3= −δ13):

Σ∗σσ′(1, 1

′) = ie

~ϕcl(1)δσσ′δ(1− 1′)+

− 1

~Gσρ(1, 2)

δϕcl(3)

δρ(1)

δ(3)Γ

δϕcl(3)δψclρ (2)δψclσ′ (1′)

13 / 24

Page 108: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Ward Identities → Hedin equations Begin with Schwinger–Dyson equation:

[

k(1) +δWδρ(1)

]δWδησ(1)

− ~δ(2)W

δρ(1)δησ(1)+ ησ(1) = 0

Derivative w.r.t. external source (G11′ = −~W(2)η1η1′

with sources to 0):

[

k(1) + ieϕcl(1)

]

Gσσ′ (1, 1′)− ~δ

δρ(1)Gσσ′ (1, 1′) = −~δσσ′δ(1− 1′)

Using k(1)δ(1− 1′) = − δ(2)Γ(0)

δψcl(1)δψcl(1′)and Γψψ − Γ

(0)

ψψ= −~Σ∗:

Σ∗σρ(1, 2)Gρσ′ (2, 1′) +

δ

δρ(1)Gσσ′ (1, 1′)− i e

~ϕcl(1)Gσσ′ (1, 1′) = 0

Apply functional inverse (againW(2)η1η2

Γ(2)

ψ2ψ3= −δ13):

Σ∗σσ′(1, 1

′) = ie

~ϕcl(1)δσσ′δ(1− 1′)+

− 1

~Gσρ(1, 2)

δϕcl(3)

δρ(1)

δ(3)Γ

δϕcl(3)δψclρ (2)δψclσ′ (1′)

Hedin equation for Σ∗!13 / 24

Page 109: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

14 / 24

Page 110: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper self–energy Σ∗σσ′ (1, 1

′):

Σ∗σσ′ (1, 1

′) =1

~δσσ′δ(1− 1′)UH(1) + Σ∗

xcσσ′(1, 1′)

14 / 24

Page 111: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper self–energy Σ∗σσ′ (1, 1

′):

Σ∗σσ′ (1, 1

′) =1

~δσσ′δ(1− 1′)UH(1) + Σ∗

xcσσ′(1, 1′)

Hartree insertion (tadpole):

1

~UH(1) =

1

~

d2 U0(1, 2)Gρρ(2, 2+)

14 / 24

Page 112: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper self–energy Σ∗σσ′ (1, 1

′):

Σ∗σσ′ (1, 1

′) =1

~δσσ′δ(1− 1′)UH(1) + Σ∗

xcσσ′(1, 1′)

Hartree insertion (tadpole):

1

~UH(1) =

1

~

d2 U0(1, 2)Gρρ(2, 2+)

Exchange–correlation term:

Σ∗xcσσ′

(1, 1′) = −

1

~

d2d3 Gσρ(1, 2)U(3, 1)Γσ′ρ(1′, 2, 3)

14 / 24

Page 113: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper self–energy Σ∗σσ′ (1, 1

′):

Σ∗σσ′ (1, 1

′) =1

~δσσ′δ(1− 1′)UH(1) + Σ∗

xcσσ′(1, 1′)

Hartree insertion (tadpole):

1

~UH(1) =

1

~

d2 U0(1, 2)Gρρ(2, 2+)

Exchange–correlation term:

Σ∗xcσσ′

(1, 1′) = −

1

~

d2d3 Gσρ(1, 2)U(3, 1)Γσ′ρ(1′, 2, 3)

1′

Σ∗(1; 1′)

1

=1 ≡ 1′

2+

Γ

1′

1

32

14 / 24

Page 114: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

15 / 24

Page 115: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

Π∗(1, 1′) =1

~Gσµ(1, 2)Gνσ(2′, 1+)Γνµ(2

′, 2, 1′)

15 / 24

Page 116: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

Π∗(1, 1′) =1

~Gσµ(1, 2)Gνσ(2′, 1+)Γνµ(2

′, 2, 1′)

Π∗(1, 1′) = Γ1′ 1

2′

2

15 / 24

Page 117: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

Π∗(1, 1′) =1

~Gσµ(1, 2)Gνσ(2′, 1+)Γνµ(2

′, 2, 1′)

Π∗(1, 1′) = Γ1′ 1

2′

2

Hedin equation for the dressed vertex Γµν(1, 2, 3):

15 / 24

Page 118: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations

Hedin equation for the proper polarization Π∗(1, 1′):

Π∗(1, 1′) =1

~Gσµ(1, 2)Gνσ(2′, 1+)Γνµ(2

′, 2, 1′)

Π∗(1, 1′) = Γ1′ 1

2′

2

Hedin equation for the dressed vertex Γµν(1, 2, 3):

Γµν(1, 2, 3) =1 ≡ 2 ≡ 3

+ ΓδΣ∗xcδG

1

23 4′

5′

4

5

15 / 24

Page 119: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations: approximations

16 / 24

Page 120: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations: approximations

Hartree–Fock approximation:

Γ1′

1≈

1′

1

16 / 24

Page 121: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations: approximations

Hartree–Fock approximation:

Γ1′

1≈

1′

1

Random–Phase approximation:

Γ1′

1≈

1′

1

16 / 24

Page 122: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Hedin equations: approximations

Hartree–Fock approximation:

Γ1′

1≈

1′

1

Random–Phase approximation:

Γ1′

1≈

1′

1

GW approximation:

Γ1′

1≈

1′

1

16 / 24

Page 123: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperature

17 / 24

Page 124: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

17 / 24

Page 125: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉

17 / 24

Page 126: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

17 / 24

Page 127: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]

17 / 24

Page 128: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

17 / 24

Page 129: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

17 / 24

Page 130: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

17 / 24

Page 131: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

17 / 24

Page 132: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

17 / 24

Page 133: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

↓ Kohn–Sham approach: F [n(x)] = Ffree + EH + Fxc:

17 / 24

Page 134: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

↓ Kohn–Sham approach: F [n(x)] = Ffree + EH + Fxc:

EH [n(x)] = e2

2

d3xd3yn(x)n(y)|x−y|

“Hartree mean field”.

17 / 24

Page 135: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

↓ Kohn–Sham approach: F [n(x)] = Ffree + EH + Fxc:

EH [n(x)] = e2

2

d3xd3yn(x)n(y)|x−y|

“Hartree mean field”.

uxc(x) ≡δFxc[n(x)]δn(x)

exchange–correlation potential.

17 / 24

Page 136: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory at finite temperatureGeneralization for T 6= 0 of Hohenberg–Kohn theorems (1964):

From the energy E[ψ] = 〈ψ|H|ψ〉→ to the thermodynamic potential Ω[ρ] = Tr

[

ρ(

H − µN + 1βln ρ

)]

From the minimum condition for the energy E[ψGS ] < E[ψ]→ to the minimization of the potential Ω[ρgc] < Ω[ρ]

Mermin theorem (1965):

n(x)1−1!−−−→ u(x)→ H → ρ→ Ω[n(x)]

Minimization condition: δΩ[n(x)]δn(x)

n=n∗= 0

Mermin decomposition: Ω[n(x)] = F [n(x)] +∫

d3x n(x)u(x)

↓ Kohn–Sham approach: F [n(x)] = Ffree + EH + Fxc:

EH [n(x)] = e2

2

d3xd3yn(x)n(y)|x−y|

“Hartree mean field”.

uxc(x) ≡δFxc[n(x)]δn(x)

exchange–correlation potential.

Ω =∑

i

niǫi − TSs − µN − EH [n(x)]−∫

d3x n(x)uxc(x) + Fxc[n(x)]

(

n(x) = n∗(x))

17 / 24

Page 137: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approach

18 / 24

Page 138: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

18 / 24

Page 139: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

18 / 24

Page 140: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

18 / 24

Page 141: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

18 / 24

Page 142: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

But our actual system corresponds to θ(x) = 0 (remember Z = e−βΩ):

δΓ [n]

δn(x)

∣∣∣∣θ=0

= 0

18 / 24

Page 143: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

But our actual system corresponds to θ(x) = 0 (remember Z = e−βΩ):

δΓ [n]

δn(x)

∣∣∣∣θ=0

= 0 =⇒ δΩ [n]

δn(x)

∣∣∣∣n=n∗

= 0 DFT!

18 / 24

Page 144: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

But our actual system corresponds to θ(x) = 0 (remember Z = e−βΩ):

δΓ [n]

δn(x)

∣∣∣∣θ=0

= 0 =⇒ δΩ [n]

δn(x)

∣∣∣∣n=n∗

= 0 DFT!

Moreover it is possible to prove that:

18 / 24

Page 145: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Density Functional Theory: functional approachExternal source linearly coupled to the density (vs. coupling source/field):

e−1~W[θ] =

D [ϕ]D[ψ]D [ψ] e−

1~[S+

dx θ(x)ψσ(x)ψσ(x)]

Thermal expectation value of the density:

n(x) = 〈ψ(x)ψ(x)〉θ =δW [θ]

δθ(x)

Legendre Transformation: from an external–source–based description toa density–based description:

Γ [n] =W [θ]−∫

dx θ(x)ψσ(x)ψσ(x)

Equation of motion for Γ:

θ(x) = − δΓ [n]

δn(x)

But our actual system corresponds to θ(x) = 0 (remember Z = e−βΩ):

δΓ [n]

δn(x)

∣∣∣∣θ=0

= 0 =⇒ δΩ [n]

δn(x)

∣∣∣∣n=n∗

= 0 DFT!

Moreover it is possible to prove that: If the source is real, n∗ is a minimum (W is concave, Γ is convex). The Mermin decomposition holds: Ω[n(x)] = F [n(x)] +

d3x n(x)u(x).

18 / 24

Page 146: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

19 / 24

Page 147: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form

19 / 24

Page 148: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

19 / 24

Page 149: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

19 / 24

Page 150: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

19 / 24

Page 151: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

19 / 24

Page 152: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

Z = eβEH [n(x)]

D [ϕ] e−1~[∫

dxϕ(x)(− 18π

∇2)ϕ(x)−ie∫

dxϕ(x)n(x)−~Tr ln[...]]

19 / 24

Page 153: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

Z = eβEH [n(x)]

D [ϕ] e−1~[∫

dxϕ(x)(− 18π

∇2)ϕ(x)−ie∫

dxϕ(x)n(x)−~Tr ln[...]]

With this shift, a first separation occurs (Z = e−βΩ):(remember Kohn–Sham formula: Ω =

niǫi − TSs − µN − EH −∫

n · uxc + Fxc)

19 / 24

Page 154: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

Z = eβEH [n(x)]

D [ϕ] e−1~[∫

dxϕ(x)(− 18π

∇2)ϕ(x)−ie∫

dxϕ(x)n(x)−~Tr ln[...]]

With this shift, a first separation occurs (Z = e−βΩ):(remember Kohn–Sham formula: Ω =

niǫi − TSs − µN − EH −∫

n · uxc + Fxc)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)+ieϕ(x)

)δ(x,y)

]]

19 / 24

Page 155: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integralGo back to the path integral form of the grand–canonical partition function:

Z =

D [ϕ]D[ψ]D [ψ] e

− 1~

dx[

ϕ(x)(− 18π

∇2)ϕ(x)+ψ(x)(k(x)+ieϕ(x)

)ψ(x)

]

︸ ︷︷ ︸

quadratic form↓

Integrate over fermion fields:obtain an effective bosonic theory!

(gaussian Berezin–integral:∫∏

k dθkdθke−θiAijθj = detA =

= eln detA = eTr lnA)

Z =

D [ϕ] e− 1

~

[

dxϕ(x)(− 18π

∇2)ϕ(x)−~Tr ln[

1~

(k(x)+ieϕ(x)

)δ(x,y)

]]

↑ϕ(x) = ϕH(x) + ϕ′(x)

ϕH(x, τ) = −ie

d3yn(y, τ)

|x − y|=

1

ieuH(x) =

1

ie

δEH [n(x)]

δn(x)Hartree field

Z = eβEH [n(x)]

D [ϕ] e−1~[∫

dxϕ(x)(− 18π

∇2)ϕ(x)−ie∫

dxϕ(x)n(x)−~Tr ln[...]]

With this shift, a first separation occurs (Z = e−βΩ):(remember Kohn–Sham formula: Ω =

niǫi − TSs − µN − EH −∫

n · uxc + Fxc)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)+ieϕ(x)

)δ(x,y)

]]

Price for EH : more difficult interaction term!19 / 24

Page 156: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

20 / 24

Page 157: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)

20 / 24

Page 158: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

20 / 24

Page 159: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

20 / 24

Page 160: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

20 / 24

Page 161: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

Ω [n(x)] = −EH [n(x)]− 1

βTr ln(−G−1

KS)−∫

d3x n(x)uxc(x)+

− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

20 / 24

Page 162: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

Ω [n(x)] = −EH [n(x)]− 1

βTr ln(−G−1

KS)−∫

d3x n(x)uxc(x)+

− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

The very last step:

20 / 24

Page 163: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

Ω [n(x)] = −EH [n(x)]− 1

βTr ln(−G−1

KS)−∫

d3x n(x)uxc(x)+

− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

The very last step: − 1βTr ln(−G−1

KS) =∑

i niǫi − TSs − µN

20 / 24

Page 164: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Kohn–Sham Decomposition & path–integral

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[

1~

(k(x)+ieϕH(x)

)δ(x,y)+ieϕ(x)δ(x,y)

]]

︸ ︷︷ ︸

−G−1H

(x, y)→ nH(x) 6= n(x)↓

Solution: add and remove anew field ϕxc(x) withthe following property:

GKS(x, x+) = G(x, x+)

Ω [n(x)] = −EH [n(x)]− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+]

e− 1

~

[

−ie∫

dxϕ(x)n(x)−~Tr ln[−G−1

KS(x,y)+ie

(ϕ(x)−ϕxc(x)

)δ(x,y)

]]

︸ ︷︷ ︸

δϕ(x)

Ω [n(x)] = −EH [n(x)]− 1

βTr ln(−G−1

KS)−∫

d3x n(x)uxc(x)+

− 1

βln

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

The very last step: − 1βTr ln(−G−1

KS) =∑

i niǫi − TSs − µN Price: really difficult interaction term!

20 / 24

Page 165: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

21 / 24

Page 166: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

21 / 24

Page 167: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

21 / 24

Page 168: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove:

21 / 24

Page 169: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams.

21 / 24

Page 170: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams. Fxc and uxc are not independent quantities: uxc(x) = δFxc/δn(x)

21 / 24

Page 171: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams. Fxc and uxc are not independent quantities: uxc(x) = δFxc/δn(x)

The Sham–Schlüter equation holds

21 / 24

Page 172: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams. Fxc and uxc are not independent quantities: uxc(x) = δFxc/δn(x)

The Sham–Schlüter equation holds Non–trivial first–order expansion: exchange “Fock” contribution:

F(1)xc ≡ Ex = −

e2

2

d3xd

3yn(x,y)n(y,x)

|x − y|=

21 / 24

Page 173: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Exchange–Correlation Free Energy On the one hand: Path integral expression for Ω:

Ω [n(x)] =∑

i

niǫi−TSs−µN−EH [n]−

x

n ·uxc−1

βln

D [ϕ] e− 1

~

[

...

]

On the other hand: Kohn–Sham expression for Ω:

Ω [n(x)] =∑

i

niǫi − TSs − µN − EH [n] −

x

n · uxc + Fxc [n(x)]

A comparison gives:

e−βFxc =

D [ϕ] e− 1

~

[∫

dxϕ(x)(− 18π

∇2)ϕ(x)+~∑∞n=2

1n (

ie~)n Tr

[GKSδϕ

]n]

Exact form of the exchange–correlation free energy!

Moreover it is possible to prove: The cluster–decomposition–theorem holds: Fxc is made up of only fully connected

vacuum diagrams. Fxc and uxc are not independent quantities: uxc(x) = δFxc/δn(x)

The Sham–Schlüter equation holds Non–trivial first–order expansion: exchange “Fock” contribution:

F(1)xc ≡ Ex = −

e2

2

d3xd

3yn(x,y)n(y,x)

|x − y|=

Besides: besides RPA as far as the interaction is concerned,besides One–Loop–Expansion as far as the integral is concerned...

21 / 24

Page 174: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

22 / 24

Page 175: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing.

22 / 24

Page 176: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory.

22 / 24

Page 177: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations.

22 / 24

Page 178: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework.

22 / 24

Page 179: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

22 / 24

Page 180: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature.

22 / 24

Page 181: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

22 / 24

Page 182: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

Outlooks:

22 / 24

Page 183: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

Outlooks: Expansion of Fxc besides the first non–trivial term (exchange

contribution).

22 / 24

Page 184: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

Outlooks: Expansion of Fxc besides the first non–trivial term (exchange

contribution). TDDFT in a path integral approach.

22 / 24

Page 185: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Conclusions and outlook

One single elegant formalism to describe the two most powerful tools forstudying many–body–systems: the coherent–state–path–integral:

Fields and sources are handled on the same footing. A source–based description =⇒ generating functionals:

many–body–perturbation–theory. Invariance of the integral under an infinitesimal shift of the integration

variable =⇒ Hedin equations. A picture based on the classic density nc(x) (Legendre transformation)

=⇒ DFT in the Hohenberg–Kohn framework. Change/Shift of variables =⇒ DFT in the Kohn–Sham picture:

Extension of articles in the literature to finite values of temperature. Explicit expression for the exchange–correlation free energy Fxc.

Outlooks: Expansion of Fxc besides the first non–trivial term (exchange

contribution). TDDFT in a path integral approach.

Thank you for your attention

22 / 24

Page 186: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

23 / 24

Page 187: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

23 / 24

Page 188: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

23 / 24

Page 189: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

Clifford algebra: introduce a derivative: ∂∂θi

θj = δij

23 / 24

Page 190: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

Clifford algebra: introduce a derivative: ∂∂θi

θj = δij

[∂

∂θi, θj

]

+

= δij

[∂

∂θi,∂

∂θj

]

+

= 0

23 / 24

Page 191: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

Clifford algebra: introduce a derivative: ∂∂θi

θj = δij

[∂

∂θi, θj

]

+

= δij

[∂

∂θi,∂

∂θj

]

+

= 0

Introduce an integral (Berezin), with two main properties: linearity andinvariance under a shift of the integration variable:

dθ = 0

dθ θ = 1

23 / 24

Page 192: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

Grassmann numbersA set of n anticommuting generators θ1, ..., θn: θiθj = −θjθi

Together with the identity 1, they form a 2n–dimensional algebra:

f (θ1, ..., θn) = c0 +n∑

k=1

n∑

i1...ik=1

ci1...ikθi1 ...θik

For example: ex = 1 + x+ 12x2 + ..., but eθ = 1 + θ.

Clifford algebra: introduce a derivative: ∂∂θi

θj = δij

[∂

∂θi, θj

]

+

= δij

[∂

∂θi,∂

∂θj

]

+

= 0

Introduce an integral (Berezin), with two main properties: linearity andinvariance under a shift of the integration variable:

dθ = 0

dθ θ = 1

For example:N∏

i=1

dθidθie−θiAijθj = detA

(while in the bosonic case one has∏Ni=1

R

dz∗i dzi2πi

e−z∗i Aijzj = 1

detA)

23 / 24

Page 193: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

24 / 24

Page 194: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

24 / 24

Page 195: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

24 / 24

Page 196: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

24 / 24

Page 197: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]

24 / 24

Page 198: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

24 / 24

Page 199: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

In this way no more than just quadratic forms!

24 / 24

Page 200: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

In this way no more than just quadratic forms! Price: a new bosonic field appear...

24 / 24

Page 201: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

In this way no more than just quadratic forms! Price: a new bosonic field appear... Lint = ieϕ(x, τ)

σ ψσ(x, τ)ψσ(x, τ)

LQED = ecAµ(x, t)∑

ab ψa(x, t)γµabψb(x, t)

24 / 24

Page 202: HEDIN EQUATIONS AND KOHN–S HAM POTENTIALetsf.polytechnique.fr/system/files/slides.pdffunctions, in CECAM workshop “Green’s function methods: the next generation”, Toulouse,

HEDIN EQUATIONS

AND KOHN–SHAM

POTENTIAL

IN THE

PATH–INTEGRAL

FORMALISM

Marco Vanzini

General overview

Many–particle–system

Construction of thepath–integral

Hedin equations

Density FunctionalTheory

DFT & path–integral

Conclusions

The Hubbard–Stratonovich transformation

From a four–fermions interaction to a two–fermions plus an auxiliary bosonfield one.

Numerical analogous: e−a2x2 =

R

dk√2πa

e−k2

2a−ikx

The same with fields: using Poisson equation ∇2U0(x) = −4πe2δ(4)(x):

e−12

d1d2n(1) 1~U0(1,2)n(2) =

=

D[ϕ]e−12

d1 e~ϕ(1)

(

− ~

4πe2∇2)

e~ϕ(1)−i

d1 e~ϕ(1)n(1)

=

D[ϕ]e− 1~

d1[ϕ(1)(− 18π

∇2)ϕ(1)+ieϕ(1)ψ(1)ψ(1)]↑

new interaction term (QED)

In this way no more than just quadratic forms! Price: a new bosonic field appear... Lint = ieϕ(x, τ)

σ ψσ(x, τ)ψσ(x, τ)

LQED = ecAµ(x, t)∑

ab ψa(x, t)γµabψb(x, t)

Lem = − 116πFµνF

µν = 18π

[

|E|2 − |B|2]

= 18π [∇ϕ]2

24 / 24