from fusion hindrance to oscillations in the si + si · pdf filefrom fusion hindrance to...

Post on 09-Mar-2018

229 Views

Category:

Documents

7 Downloads

Preview:

Click to see full reader

TRANSCRIPT

G. Montagnoli Università degli studi di Padova - INFN

G.Montagnoli ECT* - Trento, May 2014

From fusion hindrance to oscillations in the 28Si + 28Si system

Layout

•  The  sub-­‐barrier  trend  of  the  fusion  excita3on  func3on            of  28Si+28Si  compared  with  theore3cal  CC  analysis    •  The  observed    oscilla3ons    above  the  barrier:  their  meaning  

and  the  interpreta3on  within  the  same  model    •  A    comparison  with  the  near-­‐by  system  28Si+30Si  for  which  we  

extended  the  previous  measurements  by  an  order  of  magnitude  down  to  ≈  4  μb  

•  Summary    

G.Montagnoli ECT* - Trento, May 2014

28Si+28Si

G.Montagnoli ECT* - Trento, May 2014

We  found  very  aHrac3ve  to  inves3gate  the  behavior  of  28Si+28Si fusion  at  deep  sub-­‐barrier  energies,  because  this  system  has  a  posi3ve  Q  value  for  fusion  Q  =  +10.9  MeV,  similar  to  the  lighter  heavy-­‐ion  cases.    The  oblate  deforma3on  of  28Si      may  have  also  an  important  role  at  deep  sub-­‐barrier  energies.    This  medium-­‐mass  system  is  a  good  candidate  to  look  for  above-­‐barrier  oscilla3ons  that  can  provide  valuable  informa3on  about  the  ion-­‐ion  poten3al  and  put  constraints  on  CC  calcula3ons.      The  aim  is  to  describe  the  trend  of  sub-­‐barrier  excita3on  func3on  and  the  observed  high  energy  oscilla3ons  within  the  same  CC  model  .  

Experimental  results  obtained  detec3ng  the  Fusion-­‐Evapora3on  Residues      

G.Montagnoli ECT* - Trento, May 2014

Fusion  excita3on  func3on    

10

100

1000

104

105

106

107

-15 -10 -5 0 5 10 15 20d σ

/dΩ

(a.u

.)θ

lab (deg)

28Si+28Si

108  

83.5  

Elab  (MeV)  

74  

67  

58  0.0001

0.001

0.01

0.1

1

10

100

1000

44 48 52 56 60 64 68 72 76

Gary

σfu

s (m

b)

Elab (MeV)

28Si + 28Si

ER  angular  distribu3ons  

S.  Gary  and  C.  Volant,  PRC  25,  1877  (1982)  

G.Montagnoli ECT* - Trento, May 2014

The  case  of  28Si  +28Si:  measurement  of  sub-­‐barrier  fusion  

•  Woods-Saxon and M3Y+rep. Potential •  CC with 2+ and 3- states including nuclear deformation •  Short range imaginary potential

S-­‐factor  and  logarithmic  slope  of  28Si+28Si  

G.Montagnoli ECT* - Trento, May 2014

The  resul3ng  barrier  distribu3on  

G.Montagnoli ECT* - Trento, May 2014

Ion-­‐ion  poten3als  for    28Si+28Si  

G.Montagnoli ECT* - Trento, May 2014

Fusion  cross  sec3ons  in  different  energy  ranges  

G.Montagnoli ECT* - Trento, May 2014

High  energy  structures  of  fusion  excita3on  func3ons  

G.Montagnoli ECT* - Trento, May 2014

The fusion excitation function of 28Si+28Si

(the blue points were measured with ΔElab = 0.5 MeV, and 1% statistical error)

G.Montagnoli ECT* - Trento, May 2014

0

80

160

240

320

400

480

560

640

44 48 52 56 60 64 68 72 76

Gary σ

fus (

mb)

Elab (MeV)

28Si + 28Si

0.0001

0.001

0.01

0.1

1

10

100

1000

44 48 52 56 60 64 68 72 76

Gary

σfu

s (m

b)

Elab (MeV)

28Si + 28Si

Structures in fusion excitation function of light systems  

•  Oscillatory structures were recently interpreted due to the penetration of successive centrifugal barriers

•  A shallow ion-ion potential is needed to

fit the data above (and below) the barrier.

•  èè Look for above-barrier oscillations

in heavier systems, where sub-barrier hindrance is stronger and better established.

•  Clearly observing such oscillations would

put strong constraints on the ion-ion potential in a wide energy range.

H.Esbensen, PRC77, 054608 (2008); PRC85, 064611 (2012) C.Y.Wong, PRC86, 064603 (2012)

G.Montagnoli ECT* - Trento, May 2014

Using the first derivative of the excitation function d(Eσ)/dE makes it easier to observe oscillations

The case of 16O + 16O

E  

D.L.Hill and J.A.Wheeler, PR 89, 1102 (1953) C.Y.Wong, PRL 31, 766 (1973) I.Tserruya et al., PRC 18, 1688 (1978)

G.Montagnoli ECT* - Trento, May 2014

The existing situation for 28Si+28Si

S.  Gary  and  C.  Volant,  PRC  25,  1877  (1982)  Y.  Nagashima  et  al.,  PRC  33,  176  (1986)    

Esbensen  

G.Montagnoli ECT* - Trento, May 2014

G.Montagnoli ECT* - Trento, May 2014

Energy-weighted derivative of the excitation function for 28Si+28Si above the barrier

500

1000

1500

2000

2500

3000

62 64 66 68 70 72 74 76

d(E σ

)/dE

(mb)

Elab

(MeV)

28Si+28Si

G.Montagnoli ECT* - Trento, May 2014

500

1000

1500

2000

2500

3000

62 64 66 68 70 72 74 76

June 2013Dec. 2012

d(Eσ

)/dE

(mb)

Elab (MeV)

28Si + 28Si

Comparison with the result of the preliminary run of Dec. 2012

G.Montagnoli ECT* - Trento, May 2014

The energy difference between successive barriers:  (twice as that for a symmetric system like 28Si + 28Si, i.e. ≈1.52 MeV)

0

500

1000

1500

2000

2500

3000

3500

62 64 66 68 70 72 74 76

Dec. 2012June 2013

H. Esbensen PRC 85, 064611 (2012)

d(Eσ

)/dE

(mb)

Elab

(MeV)

28Si+28Si

L=20  

Comparison with the result of the preliminary run of Dec. 2012 and with a recent CC calculation

G.Montagnoli ECT* - Trento, May 2014

CC  results  are  very  sensi3ve  to  the  parameters  of  M3Y+rep  poten3als  and  of  the  small  imaginary  term    

First  deriva3ve  of  the  energy–weighted  cross  sec3on    

28Si  +  30Si:  new  measurement  and  comparison  

G.Montagnoli ECT* - Trento, May 2014

Fusion  excita3on  func3on  of  28Si+30Si  

G.Montagnoli ECT* - Trento, May 2014

10-3

10-2

10-1

100

101

102

103

20 25 30 35 40 45

mf (

mb)

Ecm (MeV)

28Si + 30Si

GaryANL-revLegnaro

Cn-13 sol-2Cn-10 sol-2Ch-1 sol-2

S.Gary  and  C.Volant,  PRC  25,  1877  (1982)  C.L.Jiang  et  al.,  PRC  78,  017601  (2008)  

G.Montagnoli ECT* - Trento, May 2014

C.L.Jiang  at  al.  PRC  78,  017601  (2008)  G.Montagnoli  et  al.,  this  work  

Logarithmic  slope  and  S-­‐factor  for  28Si+30Si  

The  fusion  hindrance  is  a  general  heavy-­‐ion    phenomenon  and  there  is  some  evidence  that  this  is  independent  of  the  sign  of  fusion  Q-­‐value.      

Excita3on  func3ons  of  28Si+28,30Si  

G.Montagnoli ECT* - Trento, May 2014

0.0001

0.001

0.01

0.1

1

10

100

1000

22 24 26 28 30 32 34 36

28Si + 28Si28Si + 30Si LNL28Si + 30Si Jiang

σfu

s (mb)

Ec.m. (MeV)

CC  analysis  of  Si+Si  systems  

G.Montagnoli ECT* - Trento, May 2014

10-3

10-2

10-1

100

101

102

103

22.5 25 30 35

mf (

mb)

Ecm (MeV)

28Si + 30SiM3Y+rep

28+28 Legnaro28+30 Argonne28+30 Legnaro

30+30 Bozek

G.Montagnoli ECT* - Trento, May 2014

Summary

•  Fusion cross section of 28Si+28Si have been measured in a wide energy range down to the µb region.

•  The observation of high energies oscillations puts strong

constraints on the ion-ion potential in a wide energy range. •  Comparing 28Si+28Si with extended measurements for 28Si

+30Si shows very different behaviors below the barrier, possibly due to the oblate deformation of 28Si.

•  The low energy excitation function and the oscillations observed above the barrier for 28Si+28Si can be described in the same theoretical frame. Work is in progress.

Our collaboration

G.Montagnoli, D.Montanari, F.Scarlassara, M.Mazzocco, C.Michelagnoli C.Parascandolo, E.Strano, D.Torresi Dept. of Physics and Astronomy, Univ. of Padova and INFN-Padova, Italy A.M.Stefanini, L.Corradi, E.Fioretto, H.M.Jia INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy S.Szilner, T.Mijatovic Ruder Boskovic Institute, Zagreb, Croatia H.Esbensen, C.L.Jiang Physics Division, Argonne National Laboratory, Argonne, Illinois, USA S.Courtin, F.Haas, A.Goasduff, D.Bourgin IPHC, CNRS-IN2P3, Univ. Louis Pasteur, Strasbourg Cedex 2, France J.Grebosz Institute of Nuclear Physics, Cracow, Poland

G.Montagnoli ECT* - Trento, May 2014

Theore3cal  analysis  

New  Analysis:  •  Poten3al  M3Y  +  repulsion  with  based  on  28Si  density  with  radius  R=3.14  fm  Diffuseness  a=0.48  fm  Op3mum  diffuseness  for  the  repulsion  term    ar=0.398  fm    Immaginary  poten3al  to  increase  the  absorp3on  and  improve  the  fit  at  low  energy  w0=5MeV  with  diff.  aw=0.3  fm.          

G.Montagnoli ECT* - Trento, May 2014

Coupled  channels  elas3c  and    2+,  3-­‐  2+×2+  of  target  and  projec3le                with  mutual  excita3on  of  2+,  3-­‐    and  of  2+×2+      

top related