fracture analysis and mapping of the cretaceous boquillas ...• fracture analysis of the boquillas...

Post on 10-Feb-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • FractureanalysisandmappingoftheCretaceousBoquillasFormation,BlackGapWildlife

    ManagementArea,BrewsterCounty,TXWilliams,J.W.,Alsleben,H.,andEnderlin,M.B.

    SchoolofGeology,Energy,andtheEnvironment,TexasChristianUniversity,FortWorth,TX76129

    • StratigraphicunitsalongwithprominenttopographicfeatureslocatednearHeathCanyonmayrePlectthestressesoftwomajordeformationalepisodes:Laramide-related

    shorteningandBasinandRangeextension.ShorteningstressesduringtheLaramideOrogenyproducedtheSierradelCarmenMountains,thehighpeakswithinalongthe

    westernborderoBlackGapWMA.Thelocationofthestudyareamaybeanorth-easternextensionofthismountainrange.BasinandRangeextensionalstressesgenerated

    high-anglenormalfaultsandhalf-grabenstructureswhichjuxtaposeSantaElenaLimestoneagainsttheyoungerBudaLimestoneandBoquillasFormation.Thesefaultsare

    consistentwithBasinandRange-relatedhigh-anglenormalfaultswithinBigBendNationalPark.Additionally,asaresultofthisfaulting,stratigraphicunitswithinthearea

    aretilted~10-15°tothesouthwest.

    • FractureanalysisoftheBoquillasFormationwithinHeathCanyonrevealsaconjugatesetoffractures.Set1hasanaveragestrike/dipof223°/63°.Set2hasanaverage

    strikeanddipof53°/75°.Paleostressdirectionsmaybeinferredasroughlynortheast/southwestbasedontheaveragestrikeofthesefracturesetswhichisconsistentwith

    thepaleostressdirectionsassociatedwithLaramidedeformation.

    • PreviousstudiesshowalinearrelationshipbetweenmodeIfracturespacingandbedthickness.Datainthisstudyshowanon-lineartrendbetweenthesetwovariables

    whichsuggeststhattheBoquillasFormationfracturesdifferentlythantheformationsanalyzedinpreviousstudies,thefracturesseeninthisstudyarenotmodeIfractures,

    orthattheclassiPicationoflayeringforthisstudywasincorrect.

    • Lithologymayplayaroleintheverticalpersistenceoffractures.XRFanalysisallowsthecarbonaterocklayersoftheBoquillasFormationtobeclassiPiedintoeithercalcite

    dominantlimestonesorcalcite-claydominantmarls.Thesetwochemicallydistinctrockstypesexhibitdifferingrockstrengthvalues.Limestonelayersgenerallyhavehigher

    strengthvaluesthanmarllayers,afunctionofhighercalciteandlowerclaycontent.Duetothestrength,limestonesbehaveinamorebrittlemannerthanmarlsallowing

    fracturestopropagatemorereadily.

    • Thoughpreviousstudiessuggestthenatureofbed-to-bedtransitions,gradationalorabrupt,affecttheverticalpersistenceoffractures.dataproducedinthisstudyshow

    littledifferenceinthefrequencyofthrough-goingfractureswhenthelayerinterfaceisgradualorabruptwithinlimestone-to-marltransitions.However,whentheinterface

    iscomposedofthinashbeds,thereisamarkeddecreaseinthefrequencyofthrough-goingfractures.

    Abstract Data

    Background

    Analysis

    Conclusions

    Figure3:BrükerTracerIII-Venergy-dispersivex-rayPluorescence(ED-XRF)spectrometer(ImagefromBruker

    2015).

    Figure1:EquotipBambino2micro-reboundhammermetalhardnesstester(ImagefromProceq).

    16°

    08°

    06°

    02°

    09°

    07°23°

    21°

    13°

    19°

    26°

    10°

    26°

    10°

    06° 05°

    05°

    04°

    01°

    01°

    04°

    06°

    10°

    03°07°

    03°06°

    07°

    10°

    12°

    14°

    04°

    08°

    01°

    05°

    01°

    05°

    08°

    03°05°

    04°

    06°

    14°

    09°

    07°11°

    03°

    25°

    07°

    05°08°

    15°09°

    12°

    09°

    07°

    09°

    17°

    06°

    05°

    12°

    11°

    22°27°

    13°

    04°

    01°

    07°

    09°

    Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO,NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, EsriChina (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors, and theGIS User Community

    704000.000000

    704000.000000

    705000.000000

    705000.000000

    706000.000000

    706000.000000

    707000.000000

    707000.000000

    708000.000000

    708000.000000

    709000.000000

    709000.000000

    3264100.

    0000

    00

    3264100.

    0000

    00

    3265000.

    0000

    00

    3265000.

    0000

    00

    3265900.

    0000

    00

    3265900.

    0000

    00

    3266800.

    0000

    00

    3266800.

    0000

    00

    3267700.

    0000

    00

    3267700.

    0000

    00

    ±

    LegendLinestype

    Contact³ Fault

    ³ ³ Fault Inferred

    Kse

    Kbu

    Kb

    Qg

    Qal0 0.45 0.9 1.35 1.80.225

    km

    A

    A’

    TheEagleFordShaleinsouthTexasisoneofthemostproliPicunconventionalhydrocarbonplaysintheworld(Breyer,2016).).

    In2015,naturalgasandoilfromthisPieldhitpeakproductionnumbersat5,539MMcf(millioncubicfeet)and1,118,648Bbl

    (barrels)perday,respectively(TexasRRC,2016).InSeptemberof2016,theEagleFordShaleproduced1,027,000Bblperday,

    approximately23%ofunconventionaloilproducedintheUnitedStatesforthatmonth(EIA,2016).Inorderforthislow-

    permeabilityformationtoproduce,companiesareusinghydraulicfracturing,astimulationtreatmentusedinlow-permeabilityrock

    wherebyPluidsarepumpedathighpressuresintoreservoirs,causingnewfracturestoopenand/orthereactivationofexisting

    fractures(Schlumberger,2016).

    Theaimofthisstudyistoidentifyanygeomechanicalandgeochemicalpropertiesthatoptimizefractureconnectivitywithinthe

    BoquillasFormation,theWestTexasEagleFordShaleequivalent.TheBoquillasFormationiscomposedofalternatingbedsof

    calcareousshale,marlandlimestone,rocktypesdePinedbytheircalcite,clay,andsilicacontent.

    Herewepresentageologicmapcompletedat1:6000scaleoftheareainandaroundHeathCanyonaswellasdatatakenfrom

    fouroutcropstationswithinHeathCanyon.Mappingwascompletedtounderstandlocaldeformation.Fracturespacing,frequency,

    andverticalpersistencemeasurementsweretakeninthePieldaswellasrockstrengthandhardnessmeasurements.Rockstrength

    wasmeasuredusingtheEquotipBambino2(Fig.1)androckhardnesswasdeterminedusingapointloadpenetrometer(dimpler)

    (Fig.2).Energy-dispersivex-rayPluorescence(ED-XRF)datadeterminedthebulkelementalcompositionofthematerialandsemi-

    quantitativelyassesschemicalvariationsthroughouttheoutcrop.ED-XRFanalyseswerecompletedusingaBrukerTracerIII-V

    spectrometer(Fig.3).ED-XRFandstrength/hardnessdatafromthisstudysuggeststhatfracturefrequencyandlengthareaffected

    bytheclayandcalciumcarbonatecontent,and,byinference,thestrengthoftherock.

    Figure2:Pointloadpenetrometer(dimpler)modeofoperation(top)andgraphshowingthe

    relationshipbetween“tick”marksandunconPined

    compressivestrength.

    Figure8:(left)Geologicmap

    (1:6000)ofthe

    areainand

    aroundHeath

    Canyon,Black

    GapWildlife

    Management

    Area.

    BlackGapWildlifeManagementArea(WMA)encompassesapproximately

    103,000acres(160mi2)(414km2)withintheTrans-Pecosregionofwest

    Texas(Fig.1).TheTrans-PecosisboundedbythePecosRivertotheeast,the

    thirty-secondparalleltothenorth,andbytheRioGrandeRivertothesouth

    andwest.ThewildlifemanagementareaiseastofBigBendNationalPark.

    BlackGapWMAisapartoftheChihuahuadesertbiomeandisunderthe

    managementofTexasParksandWildlife.

    TheTrans-PecosregionofTexashasexperiencedmultiplemajor

    deformationalepisodesincluding:(1)LatePaleozoicshorteningassociated

    withtheOuachitaorogeny,(2)CretaceoustoTertiaryLaramideshortening

    andtranspressionaldeformation,and(3)TertiaryBasinandRangeextension

    (MuehlbergerandDickerson,1989;Maxwelletal.,1967;St.John,1966)(Fig.

    5).TheTrans-Pecosalsoexperiencedwidespreadmagmatismfromthe

    MesozoicthroughtheCenozoicrelatedtotheLaramideorogenyandBasin

    andRangeextension(Turneret.al.,2011).

    TherockunitswithinBlackGapWMAareCretaceousoryounger.The

    LateCretaceousmarinerocksweredepositedoncarbonateplatforms

    northeastoftheChihuahuaTrough,whichformedduringlateTriassicrifting

    associatedwiththeopeningoftheGulfofMexico(Fig.6).Thisriftbasinwas

    locatedeast-northeastofasubductionrelatedmagmaticarc,whichwasthe

    sourceforLateCretaceousclasticsedimentsintheTrans-Pecos(Lehmanand

    Busbey,2007).The

    carbonateplatforms

    thatdevelopedinthe

    EarlyCretaceouswere

    thesiteofdeposition

    fortheSantaElena

    Limestone,theBuda

    Limestone,andthe

    BoquillasFormation,

    whicharethe

    dominantunitsinthe

    studyarea(Fig.7).

    Asidefrombeing

    widespreadinthe

    studyarea,rocksthat

    make-uptheCoahuila

    Platformunderliethe

    majorityoftheTrans-

    Pecosregion(Lehman

    andBusbey,2007).

    Figure7:StratigraphicColumnoftheBigBendarea(ModiPiedfromTiedemann,2010).

    Figure5:MajortectonicepisodeswithinTrans-PecosTexas(fromMuehlbergerandDickinson,1989).

    A

    B

    C

    D

    Figure10A-D:Outcropstations1-4(A-Drespectively)photosandlinedrawings

    withassociateddatatablesbelow(photos

    donothavetheresolutiontoincludeall

    fracturesinlinedrawings).

    Figure11A-D:Stereonetdataofbeddingplanesforoutcropstations1-4(A-D

    respectively).

    Figure12A-D:Stereonetdataoffracturesforoutcropstations1-4(A-D

    respectively).

    Figure13A&B:XRFdataforallbedswithineachoutcropstation(A).The

    averagecalicite-quartz-claycontentof

    eachsample.(LS=limestone)(B).

    A

    B

    Breyer,J.A.2016,Introduction,inAAPGMemoir110:TheEagleFordShale:ArenaissanceinU.S.oilproduction,pp.259-283.

    Brüker2015,Tracerseriesoverview.Accessed:April6,2015.https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/handheld-xrf/tracer-iii/overview.html

    Lehman,T.M.,andBusbey,A.B.,2007,SocietyofVertebratePaleontologyFall2007BigBendFieldTripGuidebook,Austin,SocietyofVertebratePaleontology.

    Muehlberger,W.R.,andDickerson,P.W.1989,StructureandstratigraphyofTrans-PecosTexas:ElPasotoGuadalupeMountainsandBigBendGuidebook,20-29July.Washington,D.C.:AmericanGeophysicalUnion.

    Maxwell,R.A.,Lonsdale,J.T.,Hazzard,R.T.andWilson,J.A.1967,GeologyofBigBendNationalPark,BrewsterCounty,Texas.UniversityofTexasatAustin,BureauofEconomicGeology,TexasUniv.Pub.6711.

    Proceq.EquotipBambino2ProceqMetalHardnesTesters.LastmodiPiedOctober17,2016.AccessedOctober17,2016.http://www.proceq.com/jp/nondestructivetestequipment/metal-testing/hardness-testing/equotip-

    bambino-2.html

    RailroadCommissionofTexas(TexasRRC)2016,EagleFordShaleinformation.LastmodiPied:April5.AccessedApril13,2016.http://www.rrc.state.tx.us/oil-gas/major-oil-gas-formations/eagle-ford-shale/

    St.John,B.1966,GeologyofBlackGapArea,BrewserCounty,Texas.geologicalquadranglemapGQ-0030BureauofEconomicGeology,vol.18,UniversityofTexasatAustin(1966)geologicmapscale:1:62,500

    Tiedemann,N.S.2010,ThesequencestratigraphyoftheCommanchean-GulPianinterval,BigBendNationalPark,WestTexas.[Master’sthesis]BallStateUniversity.

    Turner,K.J.,Berry,M.E.,Page,W.R.,Lehman,T.M.,Bohannon,R.G.,Scott,R.B.,Miggins,D.P.,Budahn,J.R.,Cooper,R.W.,andDrenth,B.J.,2011,GeologicmapofBigBendNationalPark,Texas:USDepartmentoftheInterior,US

    GeologicalSurvey.

    U.S.EnergyInformationAdministration(EIA)2016,Drillingproductivityreport.LastmodiPiedSeptember12.AccessedOctober25,2016http://www.eia.go/petroleum/drilling/archive/2016/09

    References

    Figure14A,B,&C:Cross-plotsofUCS(psi)(bambinoinblue&dimplerinred)vsXRFdataforallbedswithineachoutcropstation.

    UCSvs.calcite(%Ca)showsapositivecorrelation(A).UCSvs.quartz

    (%Si)showsnotrend(B),whereasUCSvsclay(%Al)showsa

    negativecorrelation(C).

    A

    B

    C

    Figure9:(right)Locationofthe

    fouroutcrop

    stationswithin

    HeathCanyon.

    Figure 16: Stereonet displaying the orientation of both sets of fractures with inferred paleostress directions.

    • Highanglenormalfaultsassociatedwith

    TertiaryBasinandRangeextensionare

    responsibleforthepresentdaytopography

    withinthemappingarea.Thedeformation

    associatedwithBasinandRangeextension

    causedthetiltingofgeologicunitsaswellas

    forminghalf-grabenstructuresalonghigh-

    anglenormalfaultswhichjuxtaposeolder

    andyoungerrocks(Fig.15A&B).

    • Fracturesaremorelikelytobethrough-

    goinginlayersofmorecompetentrock.

    Conversely,fracturesweremorelikelyto

    terminatewithinoratthecontactofabedin

    thickerlesscompetentrock(Figure10A-D).

    • Ingeneral,fractureswithineachoutcropcan

    bedividedinto2sets:Set1averagestrike/

    dipis223°/63°.Set2averagestrike/dipis

    53°/55°(Figs.XA-D).Maximumpaleostress

    directionscanbeinferredbasedonthis

    conjugateset,roughlyNE/SWinthiscase

    (Fig.16)

    • RocksoftheBoquillasFormationtendtobe

    morecalcareouswithcertainlayers

    containinghigherclayandquartzcontent.

    Overall,theBoquillasFormationatthis

    locationismoreclay-poorthantheaverage

    EagleFordShalecomposition(Figure13A&

    B)

    • Cross-plotsofXRFvs.UCSsuggestthat

    strengthoftherockincreasesascalcite

    contentincreaseandclaycontentdecreases.

    Additionally,thedimplermethodshoweda

    strongercorrelationwithelementaldata

    thantheBambino.TheBambinorequiresa

    relativelysmoothsurfacetotake

    measurementsonwhilethedimplerdoes

    not.Thiscouldbeonereasonforthe

    differenceinUCSvalues(14A,B,&C).

    B

    A

    Figure 15 A & B: Geologic map draped over a digital elevation model of Heath Canyon and the surrounding area. View looking south-southwest (A) and a view looking west-southwest (B).

    ChihuahuaTrough

    CoahuilaPlatform

    Figure6:PaleogeographicreconstructionoftheNorthAmericancontinentduringthedepositionoftheBoquillasFormation(93.2Ma).Theblackovalsoutlinethe

    approximatelocationoftheChihuahuaTrough(left)andthecarbonateplatformon

    whichsedimentsweredepositedduringthistime(modiPiedfromBlakey,2017).

    N

    14miles(22km)

    Figure4:LocationsoftheTransPecosregionofTexas(right,blackpolygon)andBlackGapWildlifeManagementArea(left,redpolygon).

top related