fei chai, peng xiu, enrique curchitser pacific ocean roms ... · fei chai, peng xiu, enrique...

Post on 28-Sep-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Pacific Ocean ROMS-CoSiNE Modeling (12-km) Incorporating optics into ROMS-CoSiNE-EcoLight Future predications for CCS based on

GFDL/ESM-ROMS-CoSiNE

Future changes of nutrient dynamics and biological productivity in California Current System

Fei Chai, Peng Xiu, Enrique Curchitser

Regional Ocean Model System (ROMS) 1/8 deg. (~12km)

(Chai et al., 2002, 2003, 2007, 2009; Fujii and Chai, 2007; Liu and Chai, 2009; Xiu and Chai, 2011, Palacz et al., 2011, Xu et al., 2013, Xiu and Chai, 2013, 2014)

Carbon, Silicate, Nitrogen Ecosystem Model (CoSiNE-13)

Regional Ocean Model System (ROMS) 1/8 deg. (~12km)

(Chai et al., 2002, 2003, 2007, 2009; Fujii and Chai, 2007; Liu and Chai, 2009; Xiu and Chai, 2011, Palacz et al., 2011, Xu et al., 2013, Xiu and Chai, 2013, 2014)

Carbon, Silicate, Nitrogen Ecosystem Model (CoSiNE-13)

Phytoplankton  Comparison  (1998-­‐2007)SeaWiFS ChlorophyllModeled Chlorophyll

SeaWiFS Phytoplankton CarbonModeled Phytoplankton Carbon

Xiu & Chai

JGR,2012

IOPs  Comparison  (1998-­‐2007)SeaWiFS (QAA) aph (443 nm)Modeled aph (440 nm)

SeaWiFS (QAA) acdom+det (412 nm)Modeled acdom+det (410 nm)

SeaWiFS (QAA) bbp (555 nm)Modeled bbp (550 nm)

Xiu & Chai 2012, JGR

January 2015

along ch

annel

12

34

periodic along-

40 km along-channel

80 km cross-channel

Idealized ROMS 3D Channel Geometry and

Configuration

Example simulations for an idealized upwelling-

downwelling

CoSiNE-­‐Op?cs-­‐EcoLight

ROMS-­‐CoSiNE

Op?cal  Module

Chl,  CDOM,detritus

Kpar

Inherent  Op?cal    Proper?es  (IOPs)

Satellite  data  QAA,  GSM….

IOPs  Comparison

Seawater  op?cal  proper?es

Photo-­‐Acclima?on

Carbon  Nitrogen  

Chlorophyll

ComparisonBiological

Radia?ve  Transfer  Model  (EcoLight)

PAR  (400  nm  to  700  nm)  Short  Wave  Radia?on  (400  to  1000)

CoSiNE-­‐Op?cs-­‐EcoLight

ROMS-­‐CoSiNE

Op?cal  Module

Chl,  CDOM,detritus

Kpar

Inherent  Op?cal    Proper?es  (IOPs)

Satellite  data  QAA,  GSM….

IOPs  Comparison

Seawater  op?cal  proper?es

Photo-­‐Acclima?on

Carbon  Nitrogen  

Chlorophyll

ComparisonBiological

Radia?ve  Transfer  Model  (EcoLight)

PAR  (400  nm  to  700  nm)  Short  Wave  Radia?on  (400  to  1000)

Hydrodynamics,  thermodynamics,  and  biology  are  fully  coupled  via  EcoLight,  RTE  solu<on  from  400-­‐1000  nm

Thermodynamics  with  Paulson  &  Simpson  short  wave  radia?on  model.  Biology  with  analy?c  PAR(z)  light  model.  There  is  no  feedback  from  biology  to  physics

Original  ROMS-­‐CoSiNE  Model New  ROMS-­‐CoSiNE-­‐EcoLight  Model

Coupling  Hydrodynamics,  Biology,  and  Op8cs

Hydrodynamics,  thermodynamics,  and  biology  are  fully  coupled  via  EcoLight,  RTE  solu<on  from  400-­‐1000  nm

Thermodynamics  with  Paulson  &  Simpson  short  wave  radia?on  model.  Biology  with  analy?c  PAR(z)  light  model.  There  is  no  feedback  from  biology  to  physics

Original  ROMS-­‐CoSiNE  Model New  ROMS-­‐CoSiNE-­‐EcoLight  Model

Coupling  Hydrodynamics,  Biology,  and  Op8cs

9

Pacific Ocean ROMS-CoSiNE Modeling (12-km) Incorporating optics into ROMS-CoSiNE-EcoLight

Future predications for CCS based on GFDL/ESM-ROMS-CoSiNE

Future changes of nutrient dynamics and biological productivity in California Current System

Fei Chai, Peng Xiu, Enrique Curchitser

1860 - 1900

2081 - 2120

Difference

Temperature (0-200m) NO3 (0-200m) Primary Production

Rykaczewski and Dunne, GRL, 2010

GFDL-ESM to ROMS-CoSiNE

Courtesy of Enrique Curchitser

One-way downscaling

For this talk:

Comparing  two  periods  (20  years) Forced  with  RCP  8.5  from  GFDL-­‐ESM2M

1990-­‐2009    VS.    2030-­‐2049  

Difference  =  AVG(2030~2049)  –  AVG(1990~2009  )

Temperature  Comparison  in  CCS

Comparison  of  Temperature  and  Stratification  Difference  =  (2030-­‐2049)  -­‐  (1990-­‐2009)

SST Increase Stratification (N2)Enhanced

Comparison  of  Nutrients  and  Primary  Production  Difference  =  (2030-­‐2049)  -­‐  (1990-­‐2009)

NO3Increase

warm colors

SiO4Increase

morewarm colors

DecreaseDecrease

warmingmore

SST Increase

Primary Production

Increase

Decrease

Comparison  of  Nutricline  Depth  (NO3  and  SiO4)  Difference  =  (2030-­‐2049)  -­‐  (1990-­‐2009)

NO3  Nutricline SiO4  Nutricline

Nutricline  become  shallower  in  most  areas,  more  so  for  silicate  than  nitrate  

Offshore  region  in  the  north,  nutricline  deepens

Plankton  Biomass  Comparions:  (2030-­‐49)  -­‐  (1990-­‐09)

Small  Phyto. Diatoms

Microzoo MesozooMesozoo  increase    more    

near  -­‐shore

Change  in    opposite  direction

Microzoo  increase    more    

off-­‐shore

positive  

Along  shore  wind

1990-­‐09

Wind  stress  curl

1990-­‐09

DIFF  =  (2039-­‐49)-­‐  (1990-­‐09)  

DIFF  =  (2039-­‐49)-­‐  (1990-­‐09)  

Increase    near  coast    

more  upwelling

Decrease    offshore    less  

upwelling

Increase    near  coast    

more  upwelling

positive  

Along  shore  wind

1990-­‐09

Wind  stress  curl

1990-­‐09

DIFF  =  (2039-­‐49)-­‐  (1990-­‐09)  

DIFF  =  (2039-­‐49)-­‐  (1990-­‐09)  

Increase    near  coast    

more  upwelling

Decrease    offshore    less  

upwelling

Increase    near  coast    

more  upwelling

Future  climate  change  impact  on  upwelling  systems

Bakun  et  al.  2015  

Bakun  Hypothesis  

Poleward  migration  of  pressure  systems  

Enhancement  of    land-­‐ocean  

thermal  contrast    along  the  coast  

%  =  [AVG(2030-­‐49)  –  AVG(1990-­‐09  )]  /AVG(1990-­‐09  )

Vertical  Nutrient  Flux  Calculations

change  (%) W NO3 SIO4

100  m 5.6% 9.9% 24%

200  m 21.3% 5.7% 18.8%

300  m -­‐4.0% 2.9% 14.8%

Changes  of  Vertical  Velocity  (W)  and  NO3  and  SiO4  in  region  2  and  3,  during  April-­‐July

23

Annual  Mean  NO3  Flux  (0-­‐200m)  (kmol/s)

2.95

2.33 1.472.00

1.360.92

1990-­‐2009

-­‐0.01 0.30

Upwelling

0.250.26

Mixing

Net  NO3  to    Region  2  &  3:  

Difference  =  1    (4.14  -­‐  3.13)  

Rykaczewski and Dunne GRL, 2010

2030-­‐2049

Annual  Mean  NO3  Flux  (0-­‐200m)  (kmol/s)

2.95

2.33 1.472.00

1.360.92

1990-­‐2009

-­‐0.01 0.30

Upwelling

0.250.26

Mixing

Net  NO3  to    Region  2  &  3:  

Difference  =  1    (4.14  -­‐  3.13)  

Rykaczewski and Dunne GRL, 2010

2030-­‐2049

Annual  Mean  NO3  Flux  (0-­‐200m)  (kmol/s)

2.95

2.33 1.472.00

1.360.92

1990-­‐2009

-­‐0.01 0.30

Upwelling

0.250.26

Mixing

Net  NO3  to    Region  2  &  3:  

Difference  =  1    (4.14  -­‐  3.13)  

Rykaczewski and Dunne GRL, 2010

2030-­‐2049

Increasing  EKE  in  the  central    offshore  potentially  enhancing    upper  water  nutrients

Eddy  Kinetic  Energy  (EKE)  Difference  =  (2030-­‐49)  -­‐  (1990-­‐09)

Increasing  EKE  in  the  central    offshore  potentially  enhancing    upper  water  nutrients

Eddy  Kinetic  Energy  (EKE)  Difference  =  (2030-­‐49)  -­‐  (1990-­‐09)

Increasing  EKE  in  the  central    offshore  potentially  enhancing    upper  water  nutrients

Eddy  Kinetic  Energy  (EKE)  Difference  =  (2030-­‐49)  -­‐  (1990-­‐09)

22

Summary for future predications of CCS

• One-­‐way  downscaling  higher  resolution  coastal  model  yield  more  information  for  regional  difference    

• In  the  central  and  southern  coast,  increase  wind  and  wind  stress  curl  lead  to  stronger  upwelling;  upwelled  nutrients  also  increased  due  to  warming  and  stratification  in  the  open  ocean  which  transport  to  the  CCS  

• Primary  production  increase  due  to  more  nutrients  to  CCS,  diatoms  and  meso-­‐zooplankton  increase  more  near  shore  

• Increased  eddy  activity  offshore  along  with  decreased  wind  stress  curl  enhance  nutrient  supply  to  the  upper  ocean  

• For  the  northern  CCS,  changing  in  wind  stress  curl  lead  to  more  downwelling,  which  leads  to  decrease  of  nutrient    

top related