feedback linearization presented by : shubham bhat (eces-817)

Post on 05-Jan-2016

230 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Feedback Linearization

Presented by : Shubham Bhat

(ECES-817)

Feedback Linearization- Single Input case

3...)(

2...)()(

.0)0(

,

0)()(,

.0)0(,0

1...)()("

xTz

uxsxqv

defineWe

TwithRonT

hismdiffeomorplocalaandorigintheofodneighborhosomein

xallforxswithXSsqfunctionssmoothexistsThere

fandcontaining

RXsetopensomeonfieldsvectorsmootharegandfwhere

xugxfx

bydescribedsystemaConsider

n

Feedback Linearization- Single Input case

.,

,5

,

.)(

1

)(

)(

5...,)(

1

)(

)(

.,

..),(

4...

var

systemthetoappliedfilterpre

depenedentstatenonlinearaandfeedbacknonlineartherepresentsthen

systemthetoappliedinputexternaltheasvofthinkweifHence

functionssmoothalsoarexs

andxs

xqwhere

vxsxs

xqu

lelinearizabfeedbackcalledissystemthecasethisIn

lecontrollabisbApairthewhere

bvAzz

formtheof

equationaldifferentilinearasatisfyvandziablesresultingThe

1

0

1

1210

1

11

1

||

'

,

1

:

0

0

,

..

......

0.100

0010

,

n

ijj

n

i

n

sasAsI

polynomialsticcharacteritheoftscoefficienthearesatheand

bM

aaaa

AMM

where

bvMzAMMz

formcanonicallecontrollabinissystemresultingthethatsuchzMz

tiontransformastateaapplyingBy

Feedback Linearization- Contd.

]....[

)()()(),(

1

:

0

0

,

0000

.......

0..100

0010

,

]...[

110'

1'1

110

n

n

aaaa

where

uxsxTMaxqzavvxTMz

bA

where

vbzAz

systemloopclosedtheinresults

zaaavv

formfeedbackstatefurtherA

Feedback Linearization- Contd.

Problem Statement

vzzzzzzzthen

definedarezandviablesnewif

conditionsfollowingthesatisfying

TthatsuchRRThismdiffeomorplocalaiii

ofodneighborhothein

xallforxsthatsuchXSsfunctionsmoothaii

XSqfunctionsmoothai

existstheredoesinassystemtheGiven

nnn

nn

,,....,

,var

:

,0)0(:)(

.0

0)()()(

)()(

??,1

13221

Example- Controlling a fluid level in a tank

.

,

.

sectansec)(

2)(])([

tanmod

.

,tanint.

tan

0

0

0

problemregulationnonlinearainvolveshofcontrol

thehleveldesiredthefromdifferentquiteishlevelinitialtheIf

pipeoutlettheof

tioncrosstheisaandktheoftioncrosstheishAwhere

ghatudhhAdt

d

isktheofeldynamicThe

hislevel

initialtheandktheouflowtheisinputcontrolThehlevel

specifiedatokainfluidofhleveltheofcontroltheConsider

d

h

d

.0)(~

0~

,tan,)(~

~sin

,""

)(2)(

)(

2)(

tasththatimpliesThis

hh

isdynamicsloopclosedresultingthe

tconspositiveabeinganderrorlevelthebeinghthhwith

hvasvgChoo

vh

linearisdynamicsresultingthespecifiedbetoinputequivalentanbeingvwith

vhAghatu

aschosenistuIf

ghauhhA

aswrittenbecandynamicsThe

d

Example – Contd.

.0)(~

~)(

),(var

.sec

2

~)(2)(

mindet

tasthyieldstilltoasso

hthv

aschosenbecanvinputequivalentthe

thfunctionyingtimeknownaisleveldesiredtheIf

levelfluidtheraisetousedispartondthewhile

ghaflowoutputtheprovidetousedisRHStheonpartfirstThe

hhAghatu

lawcontrolnonlinearthebyederisflowinputactualThe

d

d

Example – Contd.

.form

companionlecontrollabthebydescribedsystemsnonlinearof

classsatoappliedbecanionlinearizatfeedbackofideaThe

.)()(

,

)()()(

statestheoffunctionnonlineararexbandxf

andoutputscalartheisxinputcontrolscalartheisuwhere

uxbxfx

aredynamicsitsifformcompanioninbetosaidissystemAn

vx

formegratormultiple

fvb

u

nonzerobetobgassuinputcontrolthegU

uxbxf

x

x

x

x

x

dt

d

n

n

n

n

int

][1

)min(sin

)()(

......2

1

1

Example – Contd.

0)(

0...

,

....

)1(....

,

0)1(

1)(

01

1

11

txthatimplieswhich

xkxkx

toleadingplanecomplexhalflefttheinstrictlyrootsitsallhas

kpkppolynomialthethatsochosenkthewith

nxkxkxkv

lawcontroltheThus

nn

n

nn

ni

no

Example – Contd.

)2cos(sincoscos2

2

,

sin

var,

)2cos(cos

sin2

111112

211

122

11

1122

1211

zauzzzzz

zzz

areequationsstatenewthethen

xaxz

xz

iablesofsetnewtheconsiderweifHowever

xuxxx

xaxxx

Input State Linearization

.sin

int

sin

,,

2

,

)cos2sincos()2cos(

1

:

2

211

11111

vinputnewthegudynamicsnewthe

gstabilizinofproblemtheodtransformebeenhasuinputcontrol

originalthegudynamicsoriginalthegstabilizinofproblemthe

tiontransformainputandtiontransformastatethethroughThus

vz

zzz

relationstateinputlinearato

leadingdesignedbetoinputequivalentanisvwhere

zzzzvza

u

lawcontrolthebycanceledbecantiesnonlineariThe

Input State Linearization-Contd.

111112

1

21

22

211

2

2211

cos2sincossin22()2cos(

1

,

.2

2

2

2,

.

xxxxxaxx

u

xandxstateoriginaltheoftermsIn

atplacedarepoleswhose

zz

zzz

dynamicsloopclosedstabletheinresulting

zvchoosemayweexampleFor

gainsfeedback

ofchoicesproperwithanywherepolestheplacecan

zkzkv

lawcontrolfeedbackstatelinearThe

Input State Linearization-Contd.

a

zzx

zx

byzfromgivenisxstateoriginalThe

)sin( 122

11

pole-placement loop

zKv T ),( vxuu ),( uxfx

)(xzz z

Linearization Loop

-

x0

Input State Linearization-Contd.

)(

),(

xhy

uxfx

systemtheConsider

Our objective is to make the output y(t) track a desired trajectory yd(t) while keeping the whole state bounded, where yd(t) and its time derivatives up to a sufficiently high order are assumed to be known and bounded.

1

213

35

12

3221 )1(sin

.

xy

uxx

xxx

xxxx

systemorderthirdtheConsiderge

Input Output Linearization

To generate a direct relationship between the output y and the input u,differentiate the output y

.mindet

)(1

1

.exp

)1()cos)(()(

)(

)()1(

.,

)1(sin

12

212233

511

1

12

3221

ederbetoinputnewaisvwhere

fvx

u

formtheininputcontrolachooseweIf

andybetweeniprelationshlicitanrepresentsThis

xxxxxxxf

bydefinedstatetheoffunctionaisxfwhere

xfuxy

againatedifferentiweuinputthetorelateddirectlynotisySince

xxxxy

Input Output Linearization-Contd.

.exp

0

.tan

)()(

.

int

,

int

12

21

21

dynamicserrorstableonentiallyanrepresentswhich

ekeke

bygivenissystemloopclosedtheoferrortrackingThe

tsconspositivebeingkandkwhere

tytyewhereekekyv

simpleis

egratordoublethisforcontrollertrackingaofdesignThe

vy

vinputnewtheandoutputthebetween

iprelationshegratordoublelinearsimpleaobtainWe

dd

Note : The control law is defined everywhere, except at the singularity points such that x2= -1.

Input Output Linearization-Contd.

Internal Dynamics

•If we need to differentiate the output r times to generate an explicit relationship between output y and input u, the system is said to have a relative degree r.

•The system order is n. If r<= n, there is an part of the system dynamics which has been rendered “unobservable”. This part is called the internal dynamics, because it cannot be seen from the external input-output relationship.

•If the internal dynamics is stable, our tracking control design has been solved. Otherwise the tracking controller is meaningless.

•Therefore, the effectiveness of this control design, based on reduced-order model, hinges upon the stability of the internal dynamics.

1

32

2

1

xy

u

uxx

x

systemnonlineartheConsider

Assume that the control objective is to make y track yd(t).Differentiating y leads to the first state equation.Choosing control law

dynamicsernalthetoleadingequationdynamic

ondthetoappliedalsoisinputcontrolsameThe

ee

zerotoeofeconvergenconentialyieldswhich

tytexu d

int,

sec

0

exp

)()(32

Internal Dynamics

Internal Dynamics- Contd

.)()(

.0

,0sin

,

.tan

)(

,

3/122

3/122

3/12

boundedistyderivativewhosetytrajectoryanygiven

controlrysatisfactoprovidedoescontrollerabovetheTherefore

Dxwhenxand

Dxwhenxce

Dx

thatconcludeweThus

tconspositiveaisDwhere

Dety

getweboundedbetoassumedisyandboundediseIf

dd

d

d

.,

322

nonlinearandautonomousnonticallycharactersiswhich

eyxx d

.,

),()(()()(

)(int)(

0

,.exp

,

).()(

2

22

2

2

1

2

2

1

udoessoboundedremainsx

tytotendstytytotendstywhilethatseeWe

teyxxdynamicsernaltheandyyewhere

eeequationtrackingtheyieldseyxu

lawcontroltheThusucontainslicitlywhich

uxy

getweoutputtheofationdifferentioneWith

tyoutputdesiredatracktorequiredistywhere

xy

u

ux

x

x

systemlinearobservableandlecontrollabsimpletheConsider

dd

dd

d

d

Internal Dynamics in Linear Systems

.

.inf

,,

)(

int,

:

2

22

1

2

2

1

systemtheforcontrollersuitableanotisthisTherefore

tasinity

togobothuyaccordinglandxthatimpliesThis

ytexx

isdynamicsernalthebutdynamicserrortracking

sametheyieldsaboveaslawcontrolsameThe

xy

u

ux

x

x

systemdifferentslightlyaConsider

d

Internal Dynamics in Linear Systems

.inf

,min

.min

int,

.1,sec

.1,,

.

1)(

1)(

,

tan

22

21

effortinite

requirestrackingperfectsystemsphaseimumnonFor

systemphaseimum

aisitbecausestableissystemfirstofdynamicsernalThus

atzeroplanehalfrightaistherecaseondtheforwhile

atzeroplanehalfleftaistherecasefirsttheforySpecficall

zerosdifferentbutpolessamethehavesystemstheBoth

p

ppW

p

ppW

functionstransfertheconsiderwe

systemstwothebetweendifferencelfundamentathisdundersTo

Internal Dynamics in Linear Systems

•Extending the notion of zeros to nonlinear systems is not a trivial proposition.

•For nonlinear systems, the stability of the internal dynamicsmay depend on the specific control input.

•The zero-dynamics is defined to be the internal dynamicsof the system when the system output is kept at zero by the input.

•A nonlinear system whose zero dynamics is asymptotically stable is an asymptotically minimum phase system.

•Zero-Dynamics is an intrinsic feature of a nonlinear system, which does not depend on the choice of control law or the desired trajectories.

Extension of Internal Dynamics to Zero Dynamics

•Lie derivative and Lie bracket

•Diffeomorphism

•Frobenius Theorem

•Input-State Linearization

•Examples

•The zero dynamics with examples

•Input-Output Linearization with examples

•Opto-Mechanical System Example

Mathematical Tools

Lie Derivatives

.

,,)(

ftorespectwithhofderivativeLiethecalled

hLfieldvectoraandxhfunctionscalaraGiven f

fhhLbydefinedfunctionscalaraisftorespectwithhof

derivativeLiethethenRonfieldvectorsmoothabeRRf

andfunctionscalarsmoothabeRRhLetDefinition

f

nn

n

,:

,::

hLxx

hLyhLx

x

hy

areoutputtheofsderivativeThe

xhy

xfx

Example

ff

f2][

;

)(

)(

:

Lie Brackets

,....2,1],[

Re

int)tan

(],[

,

.

1

iforgadfgad

ggad

byyrecursiveldefinedbecanBracketsLiepeated

adjofordss

adwheregadaswrittencommonlyisgfBracketLieThe

gffggf

bydefinedvectorthirdaisgandf

ofBracketLieTheRonfieldsvectortwobegandfLet

if

if

of

f

n

)sin2)(2sin(2)2cos(cos

)2cos(

)2cos(

0

cossin

cos2

cos

)sin(2

0)sin(2

00],[

)2cos(

0)(

cos

sin2

)()(

121111

1

1112

1

12

121

1

112

121

xaxxxxx

xa

xxxx

ax

xx

xaxx

xgf

ascomputedbecanbracketLieThe

xxg

xx

xaxxf

bydefinedgandffieldsvectortwothewith

uxgxfxLet

Example

Example - Lie Brackets

Properties of Lie Brackets

.)(

:)(

],[],[

:)(

.tan

,,,,,,

],[],[],[

],[],[],[

:)(

21

2121

22112211

22112211

xoffunctionsmoothaisxhwhere

hLLhLLhL

identityJacobiiii

fggf

itycommutativskewii

scalarstconsareand

andfieldsvectorsmootharegggfffwhere

gfgfggf

gfgfgff

ybilineariti

propertiesfollowinghaveBracketsLie

fggfgad f

Diffeomorphisms and State transformations

.)(

,intsin

.)(

:

.

,

,,:

:

0

1

ofsubregionainhismdiffeomorplocaladefinesxthen

ofxxpoaatgularnonismatrixJacobianthe

IfRinregionaindefinedfunctionsmoothabexLet

Lemma

smoothisand

existsinverseitsifandsmoothisitifhismdiffeomorp

acalledisregionaindefinedRRfunctionA

Definition

n

nn

Example

zxwhere

zhy

uzgzfz

tionrepresentastateNew

uxgxfx

xx

z

yieldszofationDifferenti

xz

bydefinedbestatesnewtheletand

xhy

uxgxfx

bydescribedsystemdynamictheConsider

1

*

**

)(

)()(

:

))()((

)(

)(

)()(

Frobenius Theorem- Completely Integrable

.

,1,1

0

)(),...(),(

,,int

],...,[

:int

21

21

tindependen

linearlyarehgradientstheandmjmniwhere

fh

equationsaldifferentipartialofsystem

thesatisfyingxhxhxhfunctionsscalarmn

existsthereifonlyandifegrablecompletelybetosaidis

RonffffieldsvectorofsettindependenlinearlyA

egrablecompletelyofDefinition

i

ji

mn

nm

jixfxxff

thatsuchRR

functionsscalararethereifonlyandifinvolutivebeto

saidisffffieldsvectorofsettindependenlinearlyA

conditiontyinvolutiviofDefinition

m

kkijkji

nijk

n

,)()()](,[

:

,,

],...,[

:

1

21

Frobenius Theorem- Involutivity

Frobenius theorem

.

,,int

.

,...,

:

21

involutiveisit

ifonlyandifegrablecompletelyissetThe

fieldsvector

tindependenlinearlyofsetabefffLet

Theorem

m

02)3(

04

33

22

23

11

213

x

hx

x

hxx

x

hx

x

h

x

hx

equationsaldifferentipartialofsettheConsider

.,

2121

321

21

322

31231

21

.,03],[

]0312[],[

].,[

,mindet

]2)3([]014[

],[

solvableareequationsaldifferentipartialtwotheTherefore

T

TT

involutiveisfieldsvectorofsetthisffffSince

xff

fffieldsvectorofsettheoftyinvolutivithe

checkusletsolvableissetthiswhethereertoorderIn

xxxxfxf

withffarefieldsassociatedThe

Frobenius theorem- example

Input-State Linearization

.

1

.

.

0

0000

.....

...100

0..010

var

)(var

)()(

,:

,

,)()(

)()(sin

:

lawglinearizinthecalledis

lawcontroltheandstateglinearizinthecallediszstatenewThe

bA

where

bvAzz

relationiantintimelinearasatisfy

vinputnewtheandxziablesstatenewthethatsuch

vxxu

lawcontrolfeedbacknonlinearaRpismdiffeomorha

Rinregionaexiststhereiflelinearizabstateinputbe

tosaidisRonfieldsvectorsmoothbeingxgandxfwith

uxgxfxformtheinsystemnonlinearinputgleA

Definition

n

n

n

Conditions for Input-State Linearization

.,

.int

.

int

:Re

},...,{)(

},...,{)(

:

,,

,)()(

:

1

1

casenonlineartheinsatisfiedgenerallynotbutsystems

linearforsatisfiedtriviallyisItuitivelessisconditiontyinvolutiviThe

systemnonlinear

theforconditionilitycontrollabaserpretedbecanconditionfirstThe

marksFew

ininvolutiveisgadgadgsettheii

intindependenlinearlyaregadgadgfieldsvectorthei

holdconditionsfollowingthethat

suchregionaexiststhereifonlyandiflinearizedstateinputis

fieldsvectorsmoothbeingxgandxfwithsystemnonlinearThe

Theorem

nff

nff

How to perform input-state Linearization

11

111

11

11

11

11

1

1

1)(

)(

,

]....[)()(

0

2,...00

)deg

(,)(

.)(

.,...,)(

:

zLLx

zLL

zLx

withtiontransforma

inputtheandzLzLzxztiontransformastatetheComputeiv

gadz

nigadz

nreerelativetheofionlinearizatoutputinputto

leadingfunctionoutputthezstagefirstthefindsatisfiedarebothIfiii

satisfiedareconditionstyinvolutiviandilitycontrollabthewhetherCheckii

systemgiventheforgadgadgfieldsvectortheConstructi

stepsfollowingthethrough

performedbecansystemnonlinearaofionlinearizatstateinputThe

nfg

nfg

nf

Tnff

nf

nf

nff

uqqkqJ

qqkqMgLqI

)(

0)(sin

212

211

Consider a mechanism given by the dynamics which represents a single link flexible joint robot.Its equations of motion is derived as

Because nonlinearities ( due to gravitational torques) appear in the first equation, While the control input u enters only in the second equation, there is no easy wayto design a large range controller.

T

T

Jg

xxj

kxxx

l

kx

l

MgLxf

aswrittenbecangandffieldsvectoringcorrespondand

qqqqx

]1

000[

)()(sin[

][

3143112

2211

Example system

Checking controllability and involuvity conditions.

001

01

0

000

000

][

2

2

32

J

k

J

J

k

J

IJ

kIJ

k

gadgadgadg fff

It has rank 4 for k>0 and IJ> infinity. Furthermore, since the above vector fields are constant, they form an involutive set.Therefore the system is input-state linearizable.

Example system- Contd.

Let us find out the state-transformation z = z(x) and the inputtransformation so that input-state linearization is achieved.vxxu )()(

)(cos

)(sin

.,

0000

421234

31123

212

1

11

11

1

1

4

1

3

1

2

1

xxI

kxx

I

MgLfzz

xxI

kx

I

MgLfzz

xfzz

zfromobtainedbecanstatesotherThe

xz

isequationabovethetosolutionsimplestThe

onlyxoffunctionabemustzThus

x

z

x

z

x

z

x

z

Example system - Contd.

Accordingly, the input transformation is

)cos)(()cos(sin)(

))((

exp

)/()(

13112

21

44

xI

MgL

J

k

I

kxx

I

k

I

kx

I

MgLxx

I

MgLxa

where

xavk

IJu

aslicitlywrittenbecanwhich

gzfzvu

.4

43

32

21

ionlinearizatstateinputthecompletingthus

vz

zz

zz

zz

equationslinearofsetfollowingthewithupendWe

Example system- Contd.

Finally, note thatThe above input-state linearization is actually global, because the diffeomorphism z(x) and the input transformation are well defined everywhere.Specifically, the inverse of the state transformation is

.

)cos(

)sin(

12424

1313

22

11

everywhereabledifferentianddefinedwelliswhich

zzI

MgLz

k

Izx

zI

MgLz

k

Izx

zx

zx

Example system- Contd.

Input-Output Linearization of SISO systems

?)(

?

int)(

?)(

:

.

)(

)()(

sin

ionslinearizatoutputinputonbasedscontrollerstabledesigntoHowiii

ionlinearizatoutputinputthe

withassociateddynamicszeroanddynamicsernaltheareWhatii

systemnonlinearaforrelationoutputinputlinearageneratetoHowi

Issues

outputsystemtheisywhere

xhy

uxgxfx

tionrepresenta

spacestatethebydescribedsysteminputglenonlinearaGiven

Generating a linear input-output relation

0)(

100)(

,

deg:

.deg,,

.,

1

xhLL

rixhLL

xifregion

ainrreerelativehavetosaidissystemSISOTheDefinition

undefinedisreerelativesystemsthecasessomeinHowever

tynonlinearithecanceltoudesignthenandappears

uinputtheuntilrepeatedlyyfunctionoutputtheatedifferenti

tosimplyisionlinearizatoutputinputofapproachbasicThe

rfg

ifg

Normal Forms

)(

),(

),(),(

..

,int

]...[]....[

0

1

1

0

)1(21

xatorin

statesnormalorscoordinatenormalastoreferredareandThe

y

asdefinedoutputthewith

w

uba

aswritten

becansystemtheofformnormalthexpoaofodneighborhoaIn

yyy

Let

ii

r

TrTr

Zero Dynamics

.int

.int

int'

int,

.,

.),(

)(

int

dynamicsernalthe

ofstabilitytheaboutsconclusionsomemaketousallow

willdynamicszeroStudyingzeroatainedmaisy

outputthethatsuchisinputcontrolthewhendynamics

ernalssystemthegconsiderinbysystemnonlinear

theofpropertyrinsicandefinecanweHowever

statesoutputtheondependsdynamicsthisGenerally

formnormaltheofw

equationsrnlastthetoscorrespondsimplyionlinearizat

outputinputthewithassociateddynamicsernalThe

)()()(

,,

)(

)()(

,

.,

dim)(

,.

int

*

1*

xuxgxfx

toaccording

evolvesxstatessystemthedynamicszerothetoingcorrespondTherefore

xhLL

xhLtu

feedbackstatethebygivenbemustuinputoriginalThe

dynamicszeroinoperatetosystemthefororderIn

zeroatstaysythatsuchbemustinputFurther

Rinsurfacesmoothensionalrnthetorestrictedismotionits

whendynamicsitsissystemaofdynamicszerotheThuszeroaresderivative

timeitsofallthatimplieszeroyidenticallisyoutputthethatconstraThe

rfg

rf

n

Zero Dynamics

),0(

),0(

int

,

),0(

0

,0)0(..,

'min

0

0

b

au

statesernaltheof

onlyfunctionaaswrittenbecanuinputcontrolThe

systemnonlineartheof

dynamicszerotheisequationabovethedefinitionBy

w

asformnormalinwrittenbecandynamicssystemthe

eisurface

theonisstateinitialssystemthethatgAssu

Zero Dynamics- Contd.

Local Asymptotic Stabilization

systemloopclosedstableallyasymptoticlocallyatoleads

ykykykyLyLL

xu

lawcontroltheThen

planehalflefttheinstrictlyrootsitsallhas

kpkpkppK

polynomialthethatsuchktsconsChoose

kwhereykykykvthatassumeusLet

stableallyasymptoticlocallyis

dynamicszeroitsandrreerelativehassystemthethatAssume

Theorem

rr

rfr

fg

rr

r

i

ir

r

]...[1

)(

,

.

...)(

tan

....

.

,deg

:

01)1(

11

011

1

01)1(

1

Example System

.

242

,.

2

)0(

322

,1deg,

2

.intmod

3

0

(0'

3

1222

1

311

222

121

21

22

1

21

22

22

11

systemnonlinearthestablizeslocally

xxxxu

lawcontroltheThereforestableallyasymptoticisthusand

xx

simplyisysettingbyobtaineddynamicszeroassociatedThe

uxxxxxdt

dy

becauseissystemtheofreerelativetheoutputthistoingCorrespond

xxyfunctionoutputthedefineusLet

egratorpureatoingcorrespondeableuncontrollanhasthusand

uxx

x

isxxxwherexationlinearizatssystemThe

uxx

xxx

T

Global Asymptotic Stability

Zero Dynamics only guarantees local stability of a control system based on input-output linearization.

Most practically important problems are of global stabilization problems.

An approach to global asymptotic stabilization based on partial feedback linearization is to simply consider the control problem as a standard lyapunov controller problem, but simplified by the fact that putting the systems in normal form makes part of the dynamics linear.

The basic idea, after putting the system in normal form, is to view as the “input” to the internal dynamics, and as the “output”.

Steps for Global Asymptotic Stability

•The first step is to find a “ control law” which stabilizes the internal dynamics.

•An associated Lyapunov function demonstrating the stabilizing property.

•To get back to the original global control problem.

•Define a Lyapunov function candidate V appropriately as a modified version of

•Choose control input v so that V be a Lyapunov function for the whole closed-loop dynamics.

)(00

0V

0V

Local Tracking Control

)()()(~

]...[

.)1(

ttt

byvectorerrortrackingthedefineand

yyy

Lettaskscontroltracking

asymptotictoextended

becancontrollerplacementpolesimpleThe

d

Trdddd

.exp

~

]~....[1

sin

.,,

0)0(),(

,),int

tan(deg

:

101)(

11

1

onentiallyzerotoconverges

errortrackingtheandboundedremainsstatewholethe

kkyLLL

u

lawcontrolthegubyThen

stableallyasymptoticuniformlyisandboundedisexists

equationtheofsolutionthethatand

boundedandsmoothisthaterestofregiontheover

tconsanddefinedrreerelativehassystemtheAssume

Theorem

rrr

dr

frfg

dddd

d

d

Tracking Control

Inverse Dynamics

)(),(),()(

)(,

0)](....)()([)()(

,

01,....,.1,0)()(

.0),()(.)(

)(

.)(

)0(

,sec

)1(

tubaty

satisfymusttuinputcontroltheThus

ttytytytt

scoordinatenormaloftermsIn

trktyty

ttytyeityoutput

referencethetoidenticalistyoutputsystemthethatassumeusLet

perfectlyty

outputreferenceatracktooutputplantthefororderinbeshould

uinputcontrolandxconditionsinitialthewhatoutfinduslet

tionpreviousbydescribedsystemsFor

rrr

r

Trrrrr

kr

k

rr

r

.,

).(

)(Pr

).(

)(

,)(

systemtheofdynamicsinversecalledaretheyTherefore

tyhistoryoutputreferencetoingcorrespond

tuinputthecomputetousallowequationsevious

tytoequal

yidenticalltyoutputforinputcontrolrequired

theobtaincanwetytrajectoryreferenceaGiven

r

r

r

)](),([)(

)(

ttwt

equationaldifferentitheofsolutionistwhere

r

Inverse Dynamics- Contd.

Application of Feedback Linearization to Opto-Mechanics

)))(sin(tan2

(cos)))((tansin2

(sin)( 1212

z

xka

z

xkbcAxI

For the double slit aperture, the irradiance at any point in space is given as:

= wavelength = 630 nmk = wave number associated with the wavelength a = center-to-center separation = 32 umb = width of the slit = 18 umz = distance of propagation =1000 um

Plant Model

-

+ )1(

1

sMotor Dynamics Plant Model

UX2 Y= X1

1

1

1

2

sXU

X)(sin 21 XcAXY

UXXt

X

122

UXXct

X

222 )(sin

)(1)(sin 2 assumeAXcY

)(1)(sin 2 assumeAXcY

Plant Model

Input-State Linearization

.

,

)(sin)()(

)(sin

)(sin

)(sin

sin

1111

11

1

11

111

111

21

dynamicsloop

closedstableagetcanwegainsfeedbackofchoiceproperBy

zzczfwherezfzku

zkvSelect

zv

zzcvu

zzczuTherefore

uzzczgetWe

xztiontransformaagU

UXXct

X

222 )(sin

Pole-Placement loop21 xz z

Plant Model

-

+ )1(

1

sMotor Dynamics Plant Model

U(x,v)X2 Y

11zKv -

0

Input-State Linearization- Block diagram

22

22222

2222

2222

22

2222222

22

22222

22

22222

2

22

)sin()sin()(sin)sin(

)cos()cos()(sin)cos(

])(sin)[sin(])(sin)[cos(

)sin())(cos(

)sin(])[cos(

)sin()(sin

x

xuxxxcx

uxxxxxcxx

x

uxxcxuxxcxxy

x

xxxxx

x

xxxxxy

x

xxcy

Input-Output Linearization

22

2222

22222

22

222

22

222222

2222

22

222

22

22222

2222

2222

)]sin()cos()}cos(){sin(([sin

])sin()cos(

[

)]sin()(sin)sin()cos()(sin)cos([

])sin()cos(

[

)sin()sin()(sin)sin(

)cos()cos()(sin)cos(

x

xxxxxxxxc

x

xxxu

x

xxxcxxxxcxx

x

uxuxx

x

xuxxxcx

uxxxxxcxx

y

Input-Output Linearization

0]

)sin()cos([int

sin

][

0,1,

])sin()cos(

[

)(

)(])sin()cos(

[

22

2

2

2

1

22

2

2

2

22

2

2

2

x

x

x

xwherespo

gularityatexcepteverywheredefinedislawControl

yyeekyvSelect

BAgetweBuAxxwithComparing

vy

x

x

x

xxfv

u

wherexfx

x

x

xuy

dd

Input-Output Linearization

).(deg

int

.

,

:

22

ordersystemnrreerelativebecause

systemthiswithassociateddynamicsernalnoareThere

system

nonlinearthestabilizeslocallycontrollerfeedbackthehence

stableallyasymptoticisdynamicszeroThis

uxx

bygivenisDynamicsZero

Zero Dynamics

Conclusion

Control design based on input-output linearization can be made in 3 steps:

•Differentiate the output y until the input u appears

•Choose u to cancel the nonlinearities and guarantee tracking convergence

•Study the stability of the internal dynamics

If the relative degree associated with the input-output linearization is the same as the order of the system, the nonlinear system is fully linearized.

If the relative degree is smaller than the system order, then the nonlinear system is partially linearized and stability of internal dynamics has to be checked.

Homework Problems

2

122

211

1

222

112

21

2

)1(

xy

uxxx

uxkxx

fordynamicszerotheofstabilityglobalCheck

xy

uxxaxxx

xx

forcontrolleroutputinputlinearaDesign

top related