everything you need to know about linear algebra in twenty ... · everything you need to know about...

Post on 05-Jul-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Everything You Need to Know

About Linear Algebra in Twenty

Minutes

Benjamin G. Levine

This Lecture

• Definition of vector and matrix

• Definition of vector-vector, matrix-vector and matrix-matrix multiplication

• Eigenvalue problems

• Definition of commutator

• Definitions of terms related to square matrices

Vectors

1

2

...

M

v

vv

v

= =

v

Vector

Vectors

1

2

...

M

v

vv

v

= =

v

Vector Adjoint (or complex

transpose)

1 2 ...M

v v v∗ ∗ ∗ = v

Vectors

1

2

...

M

v

vv

v

= =

v

Vector Adjoint (or complex

transpose)

1 2 ...M

v v v∗ ∗ ∗ = v

Transpose

1 2 ...T

Mv v v = v

Vector-Vector Multiplication

1

2†

1 2

1

......

M

M i i

i

M

w

wv v v v w

w

∗ ∗ ∗ ∗

=

= =

∑v w

Inner Product

(AKA scalar

product; dot

product)

Vector-Vector Multiplication

1 1 1 1 2 1

2† 2 1 2 2 2

1 2

1 2

...

......

... ... ... ... ...

...

M

M

M

N N N N M

w w v w v w v

w w v w v w vv v v

w w v w v w v

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

= =

wv

Outer Product

Properties of Sets of Vectors

• Orthogonal set of vectors

• Orthonormal set of vectors

– are orthogonal

– have unit length (are normalized)

0=†u v

21≡ =†

v v v

Matrices

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

M

M

N N NM

A A A

A A A

A A A

=

A

Matrix (N x M)

Matrices

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

M

M

N N NM

A A A

A A A

A A A

=

A

Matrix (N x M)Adjoint (or complex

transpose)

11 21 1

† 12 22 2

1 2

...

...

... ... ... ...

...

N

N

M M NM

A A A

A A A

A A A

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

=

A

Matrix-Matrix Multiplication

11 12 1 11 12 111 12 1

21 22 2 21 22 221 22 2

1 2 1 21 2

... ......

... ......

... ... ... ... ... ... ... ...... ... ... ...

... ......

M LL

M LL

N N NM N N NLM M ML

A A A C C CB B B

A A A C C CB B B

A A A C C CB B B

= =

AB

Matrix-Matrix Multiplication

11 12 1 11 12 111 12 1

21 22 2 21 22 221 22 2

1 2 1 21 2

... ......

... ......

... ... ... ... ... ... ... ...... ... ... ...

... ......

M LL

M LL

N N NM N N NLM M ML

A A A C C CB B B

A A A C C CB B B

A A A C C CB B B

= =

AB

N x M M x L N x L

Matrix-Matrix Multiplication

11 12 1 11 12 111 12 1

21 22 2 21 22 221 22 2

1 2 1 21 2

... ......

... ......

... ... ... ... ... ... ... ...... ... ... ...

... ......

M LL

M LL

N N NM N N NLM M ML

A A A C C CB B B

A A A C C CB B B

A A A C C CB B B

= =

AB

1

M

ij ik kj

k

C A B=

=∑

N x M M x L N x L

Matrix-Matrix Multiplication

11 12 1 11 12 111 12 1

21 22 2 21 22 221 22 2

1 2 1 21 2

... ......

... ......

... ... ... ... ... ... ... ...... ... ... ...

... ......

M LL

M LL

N N NM N N NLM M ML

A A A C C CB B B

A A A C C CB B B

A A A C C CB B B

= =

AB

1

M

ij ik kj

k

C A B=

=∑

N x M M x L N x L

Matrix-Matrix Multiplication

11 12 1 11 12 111 12 1

21 22 2 21 22 221 22 2

1 2 1 21 2

... ......

... ......

... ... ... ... ... ... ... ...... ... ... ...

... ......

M LL

M LL

N N NM N N NLM M ML

A A A C C CB B B

A A A C C CB B B

A A A C C CB B B

= =

AB

1

M

ij ik kj

k

C A B=

=∑

N x M M x L N x L

Matrix-Matrix Multiplication

11 12 1 11 12 111 12 1

21 22 2 21 22 221 22 2

1 2 1 21 2

... ......

... ......

... ... ... ... ... ... ... ...... ... ... ...

... ......

M LL

M LL

N N NM N N NLM M ML

A A A C C CB B B

A A A C C CB B B

A A A C C CB B B

= =

AB

1

M

ij ik kj

k

C A B=

=∑

N x M M x L N x L

Matrix-Matrix Multiplication

• Properties of matrix-matrix multiplication

– Commutative property does not necessarily

hold

– Associative property holds

≠AB BA

( ) ( )=AB C A BC

Matrix-Matrix Multiplication

– Distributive property holds

– For scalar multiplication, the associative and

commutative properties hold

( )+ = +A B C AB AC

( ) ( ) ( )c c c= =AB A B A B

c c=A A

is a scalarc

Matrix-Vector Multiplication

11 12 1 11

21 22 2 22

1 2

...

...

... ... ... ... ......

...

M

M

N N NM NM

A A A dc

A A A dc

A A A dc

= =

Ac

Matrix-Vector Multiplication

1

M

i ij j

j

d A c=

=∑

11 12 1 11

21 22 2 22

1 2

...

...

... ... ... ... ......

...

M

M

N N NM NM

A A A dc

A A A dc

A A A dc

= =

Ac

Matrix-Vector Multiplication

1

M

i ij j

j

d A c=

=∑

N x M M N

11 12 1 11

21 22 2 22

1 2

...

...

... ... ... ... ......

...

M

M

N N NM NM

A A A dc

A A A dc

A A A dc

= =

Ac

Matrix-Vector Multiplication

11 12 1 11

21 22 2 22

1 2

...

...

... ... ... ... ......

...

M

M

N N NM NM

A A A dc

A A A dc

A A A dc

= =

Ac

1

M

i ij j

j

d A c=

=∑

N x M M N

Eigenvalue Problems

ω=Oc c

VectorScalarSquare

Matrix

Eigenvalue Problems

• The Schrodinger equation is an eigenvalue problem

ω=Oc c

E=HΨ Ψ

Commutator

[ , ] ≡ −A B AB BA

if [ , ] 0 then

and have the same eigenvectors

=

=

A B

AB BA

A B

Square Matrices

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N

N N NN

A A A

A A A

A A A

=

A

Square Matrix

(N x N)

Square Matrices

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N

N N NN

A A A

A A A

A A A

=

A

Square Matrix

(N x N)

Trace

1

trN

ii

i

A=

≡∑A

Determinant

11 12

11 22 12 21

21 22

A AA A A A

A A= = −A

Determinant

11 12

11 22 12 21

21 22

A AA A A A

A A= = −A

Determinant

11 12

11 22 12 21

21 22

A AA A A A

A A= = −A

Determinant

11 12

11 22 12 21

21 22

A AA A A A

A A= = −A

Most Important Property:

The interchange of any two rows or

columns of changes the sign of . AA

Types of Square Matrices

• Diagonal Matrix

– are the eigenvalues of

0 for ijA i j= ≠

iiA A

Types of Square Matrices

• Diagonal Matrix

– are the eigenvalues of

• Unit Matrix

0 for ijA i j= ≠

( ) ( ) ijij ijδ= =I 1

= =1A A1 A

iiA A

Types of Square Matrices

• Diagonal Matrix

– are the eigenvalues of

• Unit Matrix

• Inverse Matrix

0 for ijA i j= ≠

( ) ( ) ijij ijδ= =I 1

= =1A A1 A

1 1− −= =A A AA 1

iiA A

Types of Square Matrices

• Hermitian Matrix

– Real eigenvalues, orthogonal eigenvectors

or ij jiA A∗= =†

A A

Types of Square Matrices

• Hermitian Matrix

– Real eigenvalues, orthogonal eigenvectors

• Unitary Matrix

– Unitary transformation

• and have the same eigenvalues, same trace,

same determinant

– Preserves length of vector

or ij jiA A∗= =†

A A

=†U U 1

= †A U BU

A B

=-1 †U U

2 2=v Uv

Eigenvalue Problems

ω=Oc c

VectorScalarMatrix

Eigenvalue Problems

• Solving an eigenvalue problem is diagonalizing a matrix

ω=Oc c

Ω = †U OU

Eigenvalue Problems

• Solving an eigenvalue problem is diagonalizing a matrix

ω=Oc c

Ω = †U OU

Find unitary

matrix

Eigenvalue Problems

• Solving an eigenvalue problem is diagonalizing a matrix

ω=Oc c

Ω = †U OU

Find unitary

matrixDiagonal

Eigenvalue Problems

• Solving an eigenvalue problem is diagonalizing a matrix

ω=Oc c

Ω = †U OU

Diagonal elements give

us the eigenvalues

Eigenvalue Problems

• Solving an eigenvalue problem is diagonalizing a matrix

ω=Oc c

Ω = †U OU

Diagonal elements give

us the eigenvaluesRows and columns of

unitary matrix give us

eigenvectors

top related