enantiodiscriminationenantiodiscriminationstudiesstudies...

Post on 28-Jan-2021

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • EnantiodiscriminationEnantiodiscrimination Studies by Studies by 1313C DNPC DNP‐‐NMR SpectroscopyNMR Spectroscopy

    Eva Monteagudo Eva Monteagudo , , MíriamMíriam PérezPérez‐‐Trujillo, Trujillo, TeodorTeodor ParellaParella

    Servei de Ressonància Magnètica Nuclear, Servei de Ressonància Magnètica Nuclear, UniversitatUniversitat AutònomaAutònoma de Barcelona, de Barcelona, BellaterraBellaterra, , CataloniaCatalonia, , SpainSpain

    Why differentiating enantiomeric molecules?  

    SyntheticSynthetic Chiral CompoundsChiral CompoundsNatural Natural Chiral CompoundsChiral Compounds

    PharmaceuticalsPharmaceuticals

    DrugsDrugs Reactants …Reactants …

    SugarsSugars Amino acidsAmino acids

    TerpensTerpens Enzymes …Enzymes …

    Different pharmacological activity, toxicity, reactivity

    Different biological activity &functionality

    ProteinsProteinsDNADNA

    RR ++ SS

    CSA*CSA* RR

    SS

    CSA*CSA*

    CSA*CSA*

    ++

    CSA & 1H NMR Spectroscopy for Enantiodifferentiation Applications

    Organic synthesis

    Pharmacology

    Chiral Metabonomics[1]

    Natural Products

    Toxicity Studies

    RR SS

    Diastereoisomeric complexes

    RR + + SS

    Example of enantiodifferentiation of a racemic mixture  by 1H NMR using a chiral solvating agent (CSA) 

    1H Simple signals (singlets)

    Larger chemical shift range

    Poor sensitivity

    Large acquisition times

    13C Easy and fast enantiomeric excess  measurement through 

    signal integration

    Signal complexity (multiplets)

    Signal overlappingHamper the

    enantiodifferentiation study

    RR SS

    How to avoid How to avoid 11H NMR H NMR drawbacks?  drawbacks?  

    How to avoid How to avoid 11H NMR H NMR drawbacks?  drawbacks?  

    How to avoid How to avoid 1313C NMR C NMR drawbacks?  drawbacks?  

    How to avoid How to avoid 1313C NMR C NMR drawbacks?  drawbacks?  

    Enantiodifferentiation by dissolution 13C DNP‐NMR

    RR SS

    RR SS RR SS

    Enhanced signals 

    Single scan 13C NMR

    enantiodifferentiation study

    Download the

    Transfer solvent +

    CSA*CSA*

    CSA*CSA*

    SS

    CSA*CSA*

    ++

    RR

    Trityl radical

    Chiral analyte

    Glassing agent

    R R  SS

    Sample:

    Download the poster here

    HyperSense® (Oxford Instruments) Bruker 600 UltraShieldTMsample cup

    Insert sampleInsert sampleInsert sampleInsert sample Sample dissolutionSample dissolutionSample dissolutionSample dissolution AcquisitionAcquisitionAcquisitionAcquisition

    RR SS

    C3 = 33 Hz

    C4 = 16 Hz

    C5C2

    Sample (50 l) Polarization Dissolution

    Chiral analyte

    RadicalGlassing Agent

    MW freq.Polarization 

    time Transf. solvent 

    (5 ml)Transf.time

    Methionine OX63 H2O:glycerol 94.078  4h D O 3

    13C All (FIVE) carbon signals enantiodifferentiated Dissolution 13C DNP‐NMR Enhancement of all (FIVE) carbon signals

    RS‐methionine (‐)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid(18C6H4)

    Chiral analyte CSA

    2.41 mM RS‐methionineexpt. time = 17 h

    1a)

    1b)

    H5 = 4.2 Hz

    18C6H4

    H2 = 48 Hz

    = 5 Hz

    TSP

    C2 = 12 HzC1

    = 10 Hz

    **

    No enantiodiff. No 

    enantiodiff.

    2a)

    2b)

    glycerol

    C5

    C1

    C2 C3 C4

    (232 mM) (15 mM)2 g y(1:1) GHz

    ≈ 4h D2O 3 s

    H5

    H3

    H4H2

    18C6H4

    C1

    C2C3

    C4C5

    With CSA

    No CSA

    Only TWO proton signals enantiodifferentiated1H

    With CSA

    No CSA No CSA

    2.32 mM hyperpolarized RS‐methionineexpt. time = 1 s

    1a)

    Figure 1. a) 1H NMR 250 mM racemic methionine in D2O; b) 1H NMR 2.41 mMRS‐methionine, 46 mM (19 eq.) 18C6H4 in D2O. Experiments performed in a 500MHz spectrometer equipped with TCI cryoprobe and using TSP as externalreference.

    2a)

    Figure 2. a) 13C NMR 250 mM racemic methionine in D2O; b) 13C NMR 2.41 mMRS‐methionine, 46 mM (19 eq.) 18C6H4 in D2O. Experiments performed in a 500MHz spectrometer equipped with TCI cryoprobe and using TSP as externalreference.

    ← Figure 4. C1 hyperpolarized signal of RS‐methionine (2.32 mM, nat. abu.) throughSSFT/FLASH method[2] a) experiments withCSA (10 eq. 18C6H4) b)without CSA

    → Figure 5. Apparent T1 relaxation time ofC1 hyperpolarized signal of RS‐methioninefrom Fig 4 The T for the other protonated

    Figure 3. 13C DNP‐NMR 600 MHz spectrum of a hyperpolarized dissolution of2.32mM natural abundance RS‐methionine.

    C1

    No CSA No CSA No CSA

    SUMMARYSUMMARY::

    4b)No CSA

    0,3

    0,5

    0,7

    0,9

    1,1

    sign

    al in

    tensity [a.u.]

    methionine methionine + 18H6H4

    T1 = 12 s

    T1 = 5.8 s

    So far, no studies of chiral discrimination have been performed usingdissolution 13C DNP‐NMR although this methodology overcomes the maindrawbacks of both 1H and 13C NMR experiments.

    • The RS‐methionine sample preparation, polarization, dissolution andNMR experiment have been optimized in order to obtain its enhancedsignals in a single scan 13C DNP‐NMR experiment.

    • The formation of RS methioine/18C6H complex has been

    No CSA

    With CSA

    44thth International DNP Symposium. 28International DNP Symposium. 28thth ‐‐ 3030thth August, Technical University of August, Technical University of Denmark                                                         Denmark                                                         SeRMNSeRMN –– UAB blog: http://sermn.uab.cat UAB blog: http://sermn.uab.cat 44thth International DNP Symposium. 28International DNP Symposium. 28thth ‐‐ 3030thth August, Technical University of August, Technical University of Denmark                                                         Denmark                                                         SeRMNSeRMN –– UAB blog: http://sermn.uab.cat UAB blog: http://sermn.uab.cat 

    [1] Pérez‐Trujillo, M. Lindon, J.C., Parella, T., Keun, H., Nicholson, J.K., Athersuch, T.J.  Anal. Chem. 2012, 84, 2868‐2874.

    [2] Day, I.J. Mitchell, J.C. Snowden, M.J. Davis, A.L. J. Magn. Reson. 2007, 187, 216‐224.    

    Financial support for this research provided by MICINN (project CTQ2012‐32436) and Bruker Española S.A. are gratefully acknowledged. We also thank to the SeRMN, Universitat Autònoma de Barcelona, for allocating instrument time to this project.

    Acknowledgements

    from Fig 4. The T1 for the other protonatedcarbons were too short to be accuratelymeasured.

    4a)With CSA

    ns

    ‐0,1

    0,1

    0 20 40 60 80 100 120 140time [s]

    • The formation of RS‐methioine/18C6H4 complex has beendemonstrated by the decrease of the T1 relaxation time value.

    • Further work is being done on the resolution optimization ofhyperpolarized racemic methionine + 18C6H4.

top related