enantiodiscriminationenantiodiscriminationstudiesstudies...

1
Enantiodiscrimination Enantiodiscrimination Studies by Studies by 13 13 C DNP C DNPNMR Spectroscopy NMR Spectroscopy Eva Monteagudo Eva Monteagudo , Míriam Míriam Pérez PérezTrujillo, Trujillo, Teodor Teodor Parella Parella Servei de Ressonància Magnètica Nuclear, Servei de Ressonància Magnètica Nuclear, Universitat Universitat Autònoma Autònoma de Barcelona, de Barcelona, Bellaterra Bellaterra, Catalonia Catalonia, Spain Spain Why differentiating enantiomeric molecules? Synthetic Synthetic Chiral Compounds Chiral Compounds Natural Natural Chiral Compounds Chiral Compounds Pharmaceuticals Pharmaceuticals Drugs Drugs Reactants … Reactants … Sugars Sugars Amino acids Amino acids Terpens Terpens Enzymes … Enzymes … Different pharmacological activity, toxicity, reactivity Different biological activity & functionality Proteins Proteins DNA DNA R + S CSA* CSA* R S CSA* CSA* CSA* CSA* + CSA & 1 H NMR Spectroscopy for Enantiodifferentiation Applications Organic synthesis Pharmacology Chiral Metabonomics [1] Natural Products Toxicity Studies R S Diastereoisomeric complexes R + S Example of enantiodifferentiation of a racemic mixture by 1 H NMR using a chiral solvating agent (CSA) 1 H Simple signals (singlets) Larger chemical shift range Poor sensitivity Large acquisition times 13 C Easy and fast enantiomeric excess measurement through signal integration Signal complexity (multiplets) Signal overlapping Hamper the enantiodifferentiation study R S How to avoid How to avoid 1 H NMR H NMR drawbacks? drawbacks? How to avoid How to avoid 1 H NMR H NMR drawbacks? drawbacks? How to avoid How to avoid 13 13 C NMR C NMR drawbacks? drawbacks? How to avoid How to avoid 13 13 C NMR C NMR drawbacks? drawbacks? Enantiodifferentiation by dissolution 13 C DNPNMR R S R S R S Enhanced signals Single scan 13 C NMR enantiodifferentiation study Download the Transfer solvent + CSA* CSA* CSA* CSA* S CSA* CSA* + R Trityl radical Chiral analyte Glassing agent R S Sample: Download the poster here HyperSense® (Oxford Instruments) Bruker 600 UltraShield TM sample cup Insert sample Insert sample Insert sample Insert sample Sample dissolution Sample dissolution Sample dissolution Sample dissolution Acquisition Acquisition Acquisition Acquisition RS C3 = 33 Hz C4 = 16 Hz C5 C2 Sample (50 l) Polarization Dissolution Chiral analyte Radical Glassing Agent MW freq. Polarization time Transf. solvent (5 ml) Transf. time Methionine OX63 H2O:glycerol 94.078 4h D O 3 13 C All (FIVE) carbon signals enantiodifferentiated Dissolution 13 C DNPNMR Enhancement of all (FIVE) carbon signals RSmethionine ()(18crown6)2,3,11,12tetracarboxylic acid (18C6H4) Chiral analyte CSA 2.41 mM RSmethionine expt. time = 17 h 1a) 1b) H5 = 4.2 Hz 18C6H4 H2 = 48 Hz = 5 Hz TSP C2 = 12 Hz C1 = 10 Hz * No enantiodiff. No enantiodiff. 2a) 2b) glycerol C5 C1 C2 C3 C4 (232 mM) (15 mM) 2 (1:1) GHz 4h D2O 3 s H5 H3 H4 H2 18C6H4 C1 C2 C3 C4 C5 With CSA No CSA Only TWO proton signals enantiodifferentiated 1 H With CSA No CSA No CSA 2.32 mM hyperpolarized RSmethionine expt. time = 1 s 1a) Figure 1. a) 1 H NMR 250 mM racemic methionine in D 2 O; b) 1 H NMR 2.41 mM RSmethionine, 46 mM (19 eq.) 18C6H 4 in D 2 O. Experiments performed in a 500 MHz spectrometer equipped with TCI cryoprobe and using TSP as external reference. 2a) Figure 2. a) 13 C NMR 250 mM racemic methionine in D 2 O; b) 13 C NMR 2.41 mM RSmethionine, 46 mM (19 eq.) 18C6H 4 in D 2 O. Experiments performed in a 500 MHz spectrometer equipped with TCI cryoprobe and using TSP as external reference. Figure 4. C 1 hyperpolarized signal of RSmethionine (2.32 mM, nat. abu.) through SSFT/FLASH method [2] a) experiments with CSA (10 eq. 18C6H 4 ) b) without CSA Figure 5. Apparent T 1 relaxation time of C 1 hyperpolarized signal of RSmethionine from Fig 4 The T for the other protonated Figure 3. 13 C DNPNMR 600 MHz spectrum of a hyperpolarized dissolution of 2.32 mM natural abundance RSmethionine. C1 No CSA No CSA No CSA SUMMARY SUMMARY: 4b) No CSA 0,3 0,5 0,7 0,9 1,1 signal intensity [a.u.] methionine methionine + 18H6H4 T1 = 12 s T1 = 5.8 s So far, no studies of chiral discrimination have been performed using dissolution 13 C DNPNMR although this methodology overcomes the main drawbacks of both 1 H and 13 C NMR experiments. The RSmethionine sample preparation, polarization, dissolution and NMR experiment have been optimized in order to obtain its enhanced signals in a single scan 13 C DNPNMR experiment. The formation of RS methioine/18C6H complex has been No CSA With CSA 4 th th International DNP Symposium. 28 International DNP Symposium. 28 th th 30 30 th th August, Technical University of August, Technical University of Denmark Denmark SeRMN SeRMN – UAB blog: http://sermn.uab.cat UAB blog: http://sermn.uab.cat 4 th th International DNP Symposium. 28 International DNP Symposium. 28 th th 30 30 th th August, Technical University of August, Technical University of Denmark Denmark SeRMN SeRMN – UAB blog: http://sermn.uab.cat UAB blog: http://sermn.uab.cat [1] PérezTrujillo, M. Lindon, J.C., Parella, T., Keun, H., Nicholson, J.K., Athersuch, T.J. Anal. Chem. 2012, 84, 28682874. [2] Day, I.J. Mitchell, J.C. Snowden, M.J. Davis, A.L. J. Magn. Reson. 2007, 187, 216224. Financial support for this research provided by MICINN (project CTQ201232436) and Bruker Española S.A. are gratefully acknowledged. We also thank to the SeRMN, Universitat Autònoma de Barcelona, for allocating instrument time to this project. Acknowledgements from Fig 4. The T 1 for the other protonated carbons were too short to be accurately measured. 4a) With CSA ns 0,1 0,1 0 20 40 60 80 100 120 140 time [s] The formation of RSmethioine/18C6H 4 complex has been demonstrated by the decrease of the T 1 relaxation time value. Further work is being done on the resolution optimization of hyperpolarized racemic methionine + 18C6H 4 .

Upload: others

Post on 28-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • EnantiodiscriminationEnantiodiscrimination Studies by Studies by 1313C DNPC DNP‐‐NMR SpectroscopyNMR Spectroscopy

    Eva Monteagudo Eva Monteagudo , , MíriamMíriam PérezPérez‐‐Trujillo, Trujillo, TeodorTeodor ParellaParella

    Servei de Ressonància Magnètica Nuclear, Servei de Ressonància Magnètica Nuclear, UniversitatUniversitat AutònomaAutònoma de Barcelona, de Barcelona, BellaterraBellaterra, , CataloniaCatalonia, , SpainSpain

    Why differentiating enantiomeric molecules?  

    SyntheticSynthetic Chiral CompoundsChiral CompoundsNatural Natural Chiral CompoundsChiral Compounds

    PharmaceuticalsPharmaceuticals

    DrugsDrugs Reactants …Reactants …

    SugarsSugars Amino acidsAmino acids

    TerpensTerpens Enzymes …Enzymes …

    Different pharmacological activity, toxicity, reactivity

    Different biological activity &functionality

    ProteinsProteinsDNADNA

    RR ++ SS

    CSA*CSA* RR

    SS

    CSA*CSA*

    CSA*CSA*

    ++

    CSA & 1H NMR Spectroscopy for Enantiodifferentiation Applications

    Organic synthesis

    Pharmacology

    Chiral Metabonomics[1]

    Natural Products

    Toxicity Studies

    RR SS

    Diastereoisomeric complexes

    RR + + SS

    Example of enantiodifferentiation of a racemic mixture  by 1H NMR using a chiral solvating agent (CSA) 

    1H Simple signals (singlets)

    Larger chemical shift range

    Poor sensitivity

    Large acquisition times

    13C Easy and fast enantiomeric excess  measurement through 

    signal integration

    Signal complexity (multiplets)

    Signal overlappingHamper the

    enantiodifferentiation study

    RR SS

    How to avoid How to avoid 11H NMR H NMR drawbacks?  drawbacks?  

    How to avoid How to avoid 11H NMR H NMR drawbacks?  drawbacks?  

    How to avoid How to avoid 1313C NMR C NMR drawbacks?  drawbacks?  

    How to avoid How to avoid 1313C NMR C NMR drawbacks?  drawbacks?  

    Enantiodifferentiation by dissolution 13C DNP‐NMR

    RR SS

    RR SS RR SS

    Enhanced signals 

    Single scan 13C NMR

    enantiodifferentiation study

    Download the

    Transfer solvent +

    CSA*CSA*

    CSA*CSA*

    SS

    CSA*CSA*

    ++

    RR

    Trityl radical

    Chiral analyte

    Glassing agent

    R R  SS

    Sample:

    Download the poster here

    HyperSense® (Oxford Instruments) Bruker 600 UltraShieldTMsample cup

    Insert sampleInsert sampleInsert sampleInsert sample Sample dissolutionSample dissolutionSample dissolutionSample dissolution AcquisitionAcquisitionAcquisitionAcquisition

    RR SS

    C3 = 33 Hz

    C4 = 16 Hz

    C5C2

    Sample (50 l) Polarization Dissolution

    Chiral analyte

    RadicalGlassing Agent

    MW freq.Polarization 

    time Transf. solvent 

    (5 ml)Transf.time

    Methionine OX63 H2O:glycerol 94.078  4h D O 3

    13C All (FIVE) carbon signals enantiodifferentiated Dissolution 13C DNP‐NMR Enhancement of all (FIVE) carbon signals

    RS‐methionine (‐)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid(18C6H4)

    Chiral analyte CSA

    2.41 mM RS‐methionineexpt. time = 17 h

    1a)

    1b)

    H5 = 4.2 Hz

    18C6H4

    H2 = 48 Hz

    = 5 Hz

    TSP

    C2 = 12 HzC1

    = 10 Hz

    **

    No enantiodiff. No 

    enantiodiff.

    2a)

    2b)

    glycerol

    C5

    C1

    C2 C3 C4

    (232 mM) (15 mM)2 g y(1:1) GHz

    ≈ 4h D2O 3 s

    H5

    H3

    H4H2

    18C6H4

    C1

    C2C3

    C4C5

    With CSA

    No CSA

    Only TWO proton signals enantiodifferentiated1H

    With CSA

    No CSA No CSA

    2.32 mM hyperpolarized RS‐methionineexpt. time = 1 s

    1a)

    Figure 1. a) 1H NMR 250 mM racemic methionine in D2O; b) 1H NMR 2.41 mMRS‐methionine, 46 mM (19 eq.) 18C6H4 in D2O. Experiments performed in a 500MHz spectrometer equipped with TCI cryoprobe and using TSP as externalreference.

    2a)

    Figure 2. a) 13C NMR 250 mM racemic methionine in D2O; b) 13C NMR 2.41 mMRS‐methionine, 46 mM (19 eq.) 18C6H4 in D2O. Experiments performed in a 500MHz spectrometer equipped with TCI cryoprobe and using TSP as externalreference.

    ← Figure 4. C1 hyperpolarized signal of RS‐methionine (2.32 mM, nat. abu.) throughSSFT/FLASH method[2] a) experiments withCSA (10 eq. 18C6H4) b)without CSA

    → Figure 5. Apparent T1 relaxation time ofC1 hyperpolarized signal of RS‐methioninefrom Fig 4 The T for the other protonated

    Figure 3. 13C DNP‐NMR 600 MHz spectrum of a hyperpolarized dissolution of2.32mM natural abundance RS‐methionine.

    C1

    No CSA No CSA No CSA

    SUMMARYSUMMARY::

    4b)No CSA

    0,3

    0,5

    0,7

    0,9

    1,1

    sign

    al in

    tensity [a.u.]

    methionine methionine + 18H6H4

    T1 = 12 s

    T1 = 5.8 s

    So far, no studies of chiral discrimination have been performed usingdissolution 13C DNP‐NMR although this methodology overcomes the maindrawbacks of both 1H and 13C NMR experiments.

    • The RS‐methionine sample preparation, polarization, dissolution andNMR experiment have been optimized in order to obtain its enhancedsignals in a single scan 13C DNP‐NMR experiment.

    • The formation of RS methioine/18C6H complex has been

    No CSA

    With CSA

    44thth International DNP Symposium. 28International DNP Symposium. 28thth ‐‐ 3030thth August, Technical University of August, Technical University of Denmark                                                         Denmark                                                         SeRMNSeRMN –– UAB blog: http://sermn.uab.cat UAB blog: http://sermn.uab.cat 44thth International DNP Symposium. 28International DNP Symposium. 28thth ‐‐ 3030thth August, Technical University of August, Technical University of Denmark                                                         Denmark                                                         SeRMNSeRMN –– UAB blog: http://sermn.uab.cat UAB blog: http://sermn.uab.cat 

    [1] Pérez‐Trujillo, M. Lindon, J.C., Parella, T., Keun, H., Nicholson, J.K., Athersuch, T.J.  Anal. Chem. 2012, 84, 2868‐2874.

    [2] Day, I.J. Mitchell, J.C. Snowden, M.J. Davis, A.L. J. Magn. Reson. 2007, 187, 216‐224.    

    Financial support for this research provided by MICINN (project CTQ2012‐32436) and Bruker Española S.A. are gratefully acknowledged. We also thank to the SeRMN, Universitat Autònoma de Barcelona, for allocating instrument time to this project.

    Acknowledgements

    from Fig 4. The T1 for the other protonatedcarbons were too short to be accuratelymeasured.

    4a)With CSA

    ns

    ‐0,1

    0,1

    0 20 40 60 80 100 120 140time [s]

    • The formation of RS‐methioine/18C6H4 complex has beendemonstrated by the decrease of the T1 relaxation time value.

    • Further work is being done on the resolution optimization ofhyperpolarized racemic methionine + 18C6H4.