elec 3105 basic em and power engineering rotating dc motor part 2 electrical

Post on 06-Jan-2018

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Motor / Generator Action Linear relation between speed and torque Current flows in a direction to charge the battery. Motor Slide extracted from linear motor and modified for loop motor. Stall torque Generator Link

TRANSCRIPT

ELEC 3105 Basic EM and Power Engineering

Rotating DC MotorPART 2 Electrical

Motor / Generator Action

BrVemf

2

Equivalent circuit

emfVbat

V

R

terminalv

Expression of Vemf

Loop

Slide extracted from linear motor and modified for loop motor.

I

emfbatVIRV

BrRrB

Vbat

22

rBI2

Motor / Generator Action

BrRrB

Vbat 22

Linear relation betweenspeed and torque

rBVbat

loadno 2

RVrB bat2

0

Current flows in a direction to charge the battery.

Motor

Slide extracted from linear motor and modified for loop motor.

Stall torque

GeneratorLink

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

E = motor voltageRa = armature resistanceLa = armature inductanceV = Applied motor voltageIa = armature current

= magnetic fluxRf = field resistanceLf = field inductanceVf = Field voltageIf = field current

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: FIELD SIDE

𝐼 𝑓=𝑉 𝑓

𝑅𝑓Φ=

2𝑛𝐼 𝑓𝔑reluctance

Magnetic circuit

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: ARMATURE SIDE

𝐸=π‘˜πΈΞ¦πœ”π‘š

Motor constant

Back emf

Motor / Generator Action

BrVemf

2

Equivalent circuit

emfVbat

V

R

terminalv

Expression of Vemf

Loop

Slide extracted from linear motor and modified for loop motor.

I

emfbatVIRV

BrRrB

Vbat

22

rBI2

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: ARMATURE SIDE

𝐸=π‘˜πΈΞ¦πœ”π‘š

Motor constant

Back emf

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: ARMATURE SIDE

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Ž

Motor constant

Developed torque

π‘˜πΈ=π‘˜π‘‡ Same motor constant in emf and developed torque

Motor / Generator Action

BrVemf

2

Equivalent circuit

emfVbat

V

R

terminalv

Expression of Vemf

Loop

Slide extracted from linear motor and modified for loop motor.

I

emfbatVIRV

BrRrB

Vbat

22

rBI2

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: ARMATURE SIDE

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ 𝐼 π‘Ž

Motor constant

Developed torque

π‘˜πΈ=π‘˜π‘‡ Same motor constant in emf and developed torque

𝐸=π‘˜πΈΞ¦πœ”π‘š

Motor constant

Back emf

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

Power flow: ARMATURE SIDE; Conservation of energy

𝑉=πΌπ‘Žπ‘…π‘Ž+𝐸KVL

POWER 𝑉 𝐼 π‘Ž= πΌπ‘Ž2 π‘…π‘Ž+𝐼 π‘ŽπΈ

Power in

Armature copper loss

Power developed

Motor / Generator Action

BrVemf

2

Equivalent circuit

emfVbat

V

R

terminalv

Expression of Vemf

Loop

Slide extracted from linear motor and modified for loop motor.

I

emfbatVIRV

BrRrB

Vbat

22

rBI2

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

Power flow: ARMATURE SIDE; Conservation of energy

𝑃𝑑𝑒𝑣= πΌπ‘ŽπΈ=πœ”π‘šπ‘‡π‘‘π‘’π‘£

Power developed

𝑃 π‘™π‘œπ‘ π‘ π‘ƒ 𝑖𝑛

𝑃𝑑𝑒𝑣

Electrical Mechanicalcopper

𝑉 𝐼 π‘Ž= πΌπ‘Ž2 π‘…π‘Ž+𝐼 π‘ŽπΈ

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

Power flow: ARMATURE SIDE π‘ƒπ‘œπ‘’π‘‘=π‘ƒπ‘‘π‘’π‘£βˆ’π‘ƒπ‘Ÿπ‘œπ‘‘

𝑃 π‘™π‘œπ‘ π‘ π‘ƒ 𝑖𝑛

𝑃𝑑𝑒𝑣

Electrical Mechanical

π‘ƒπ‘Ÿπ‘œπ‘‘

π‘ƒπ‘œπ‘’π‘‘

Rotational lossCopper

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

Motor sequence π‘ƒπ‘œπ‘’π‘‘=π‘ƒπ‘‘π‘’π‘£βˆ’π‘ƒπ‘Ÿπ‘œπ‘‘

πœ”π‘šπ‘‰ 𝑇 𝑑𝑒𝑣

Speed of rotation limiting loop

πΈπΌπ‘Ž 𝑃𝑑𝑒𝑣

Shunt Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣𝐿 𝑓

𝑅 𝑓R

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Ž

𝑉=πΌπ‘Žπ‘…π‘Ž+𝐸

𝐸=π‘˜πΈΞ¦πœ”π‘š

𝑇 𝑑𝑒𝑣=π‘˜Ξ¦π‘‰π‘…π‘Ž

βˆ’ π‘˜2Ξ¦2

π‘…π‘Žπœ”π‘š

Developed torque Rotation rate

Shunt Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣𝐿 𝑓

𝑅 𝑓R

𝑇 𝑑𝑒𝑣=π‘˜Ξ¦π‘‰π‘…π‘Ž

βˆ’ π‘˜2Ξ¦2

π‘…π‘Žπœ”π‘š

Similar type of graph

Shunt Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣𝐿 𝑓

𝑅 𝑓R

𝑇 𝑑𝑒𝑣=π‘˜Ξ¦π‘‰π‘…π‘Ž

βˆ’ π‘˜2Ξ¦2

π‘…π‘Žπœ”π‘š

𝑇 𝑑𝑒𝑣

πœ”π‘š

πΎΞ¦π‘‰π‘…π‘Ž

π‘‰π‘˜Ξ¦

MotorGenerator

Force motor to spin backwards

Generator

Force motor to spin to fast

Series Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓𝑅 𝑓

Universal motor design: works for D.C. and for A.C.

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ 𝐼 π‘Ž

𝑉=𝐼 π‘Ž(π‘…ΒΏΒΏπ‘Ž+𝑅𝑓 )+𝐸 ΒΏ

𝐸=π‘˜πΈΞ¦πœ”π‘š

𝑇 𝑑𝑒𝑣=π‘˜β€² πΌπ‘Ž2 Since Φ∝ πΌπ‘Ž

Series Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓𝑅 𝑓

Universal motor design: works for D.C. and for A.C.

𝑇 𝑑𝑒𝑣=π‘˜β€² [ π‘‰π‘…π‘Ž+𝑅 𝑓+π‘˜β€²πœ”π‘š ]

2

𝑇 𝑑𝑒𝑣

πœ”π‘š

1πœ”π‘š

2

Maximum Power Transfer

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓𝑉=𝐼 π‘Žπ‘…π‘Ž+𝐸

Power developed in the motor 𝑃𝑑𝑒𝑣=𝐸 πΌπ‘Ž

𝑃𝑑𝑒𝑣=𝐸 (𝑉 βˆ’πΈ )/π‘…π‘Ž

𝑃𝑑𝑒𝑣=𝐸𝑉 βˆ’πΈ2

π‘…π‘Ž

Find maximum with respect to the motor voltage

Maximum Power Transfer

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓𝑉=𝐼 π‘Žπ‘…π‘Ž+𝐸

For extremes of a function, take derivatives and set to zero

𝑃𝑑𝑒𝑣=π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š h𝑀 𝑒𝑛𝐸=𝑉2

𝑃𝑑𝑒𝑣 π‘šπ‘Žπ‘₯ = 𝑣2

4 π‘…π‘Ž

Calculation example

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

A 120 volt dc motor has an armature resistance of 0.70 Ξ©. At no-load, it requires 1.1 A armature current and runs at 1000 rpm. Find the output power and torque at 952 rpm output speed. Assume constant flux.

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Žπ‘‰=πΌπ‘Žπ‘…π‘Ž+𝐸

𝐸=π‘˜πΈΞ¦πœ”π‘š

Solution provided in class

Calculation example

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

A permanent magnet dc motor has the following information: 50 hp, 200 V, 200 A, 1200 rpm and armature resistance of 0.05 Ξ©. Determine the output power if the voltage is lowered to 150 V and the current is 200 A. Assume rotational losses are proportional to speed. Determine the rotational loss, armature resistance, no-load rpm, machine constant, efficiency?

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Žπ‘‰=πΌπ‘Žπ‘…π‘Ž+𝐸

𝐸=π‘˜πΈΞ¦πœ”π‘š

Solution provided in class

Calculation example

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

An 80 V dc motor has constant field flux, separately excited, and a nameplate speed of 1150 rpm with 710 W output power. The nameplate armature current is 10 A and the no-load current is 0.5 A. Assume constant rotational losses.

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Žπ‘‰=πΌπ‘Žπ‘…π‘Ž+𝐸

𝐸=π‘˜πΈΞ¦πœ”π‘š

Solution provided in class

top related