dr sulbha kulkarni-ii

Post on 13-Dec-2014

141 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Sulabha KulkarniIndian Institute of Science

Education & Research, Pune

Nano MaterialsCharacterization

Recent Trends in

Synthesis & Characterization Of

Multifunctional Materials(RTSCTMN-09)

22nd June 2009

Nano Materials,Characterization Techniques

Ref. Nanotechnology : Principles and Practices

By Sulabha K. Kulkarni

Capital Publishing Co.

7/28, Mahaveer Street, Ansari Road

Daryaganj, New Delhi -110002

Nano Materials,Characterization Techniques

Contents

Introduction to Quantum MechanicsStructure and BondingSynthesis of Nanomaterials (Physical Methods)Synthesis of Nanomaterials (Chemical Methods)Synthesis of Nanomaterials (Biological Methods)Analysis TechniquesProperties of NanomaterialsNanolithographySome Special NanomaterialsApplicationsPracticals

Nano Materials, Characterization Techniques

Lecture I• Which are the Nanomaterials are we looking for

• Methods of Synthesis

Lecture II• What kind of analysis is needed

• Available and commonly required analysis techniques

• Principles of some analysis techniques with

Illustrative examples

Nano Materials,Characterization Techniques

Depends upon the Properties of Interest !

But

Sample Purity (Composition) ……. Essential

Size, Shape & Structure ……. EssentialPorosity, Surface Area etc.

Mechanical, Optical, Thermal, Electrical, Magnetic

What kind of analysis is needed

Nano Materials,Characterization Techniques

Size, Shape & Structure ……. Essential

Available Techniques

Microscopes Confocal MicroscopeScanning Near Field Optical MicroscopeScanning Electron Microscope, Transmission Electron MicroscopeScanning Tunneling MicroscopeAtomic Force MicroscopeMagnetic Force Microscope

X-ray Diffraction Wide Angle X-ray ScatteringSmall Angle X-ray scattering

Nano Materials,Characterization Techniques

Size, Shape and Distribution Analysis

Microscopes

Nano Materials,Characterization Techniques

Objective lens

Transparent specimen

Collector

Laser source

Scanned point Detector

Confocal Microscope

Resolution

Limited by Wavelength Of the Radiation used

Nano Materials,Characterization Techniques

Scanning Near Field Optical Microscope

Nano Collector

Source

Detector

Sample surface

Propagating Waves

Evanescent Beam generated by nano collector Evanescent Beam generated

by nanostructured object

Incident Rays

Amplifier

Piezo drive

Scaner distance control

Photomultiplier

Laser Beam

Metal coating

Optical fiberSample

Computer

Sulabha Kulkarni,NanotechnologyPrinciples and Practices

Overcomes Diffraction Limit

20 nm – 60 nm

Nano Materials,Characterization Techniques

Condenser lenses

Electron gun

Specimen

Scanning generator

Amplifier

CRT

Scanning coils

Scanning Electron Microscope (SEM)

Incident beam

Auger electrons

Secondary electrons

Back scattered electrons

Characteristic X-rays

Bottom of the sample

Resolution : ~ 50 –100 nm

Sulabha Kulkarni,NanotechnologyPrinciples and Practices

E ~ 5 –100 KeV

Needles Flowers

Rods Tetrapods

ZnO micro particles: different morphologies

BeltsKulkarni et al

1 m

0.5 m

1 m

(a) (b)

(c)

(1) (2) (3)

(4)(5)

(6)

Growth of ZnOparticles with central cavity

communicated

SEM

20 μm50 m

Aligned SnO2 Rods

10 m

Obtained by Sol-Gel routeOn Glass Slide/Si

Thin Solid Films 515 (2006) 1450

Silica-Titania Core-Shell Particles

After first coating step

After Second coating step

Silica Particles Silica @ Titania core - shell Particles

Thin coating Thick coating Uncoated particles

300 400 500 600 700 800

Wavelength (nm)

Inte

nsi

ty

Silica Particles

Titania Particles

328 nm

Silica@Titania Particles

Silica Particles of size ~ 213 nm coated with 39 nm thick shell of titania

Titania-Silica Core-Shell Particles

300 400 500 600 700 800

Wavelength (nm)

Inte

nsi

ty (

arb

un

its)

325 nm

348 nm

Titania Particles

Titania@Silica Particles

Titania Particles Titania@Silica Particles

Titania Particles Size ~ 350 nm

Titania@Silica Particle Size ~520 nm

Pramana 65 (2005) 787

Mechanism for the binding antibody and antigene to silica@silver particles.

Kulkarni et al, CPL 404 (2005) 136

(a) (b)

(c) (d)

SEM Images

Silica Particles Silver core shell particles

Core shell particles with rabbit antibodies

With goat anti rabbitantibodies

Kulkarni et al, CPL 404 (2005) 136

Department of Physics, University of Pune

Nanoporous Materials….Aerogels

Thermally InsulatingSilica Aerogel

Transparent Silica Aerogel

SEM of an Aerogel

Aerogels are highly porous (~ 90 -98%porous) ,low density materials (~ 0.8 - 0.05 gm/cc)

Aerogels of many materials and composites can be made

Nano Materials,Characterization Techniques

Electron source

Condensor lensSample

Objective lens

Back focal plane of objective lens

Image

Diffracted beam

Direct beam

Transmission Electron Microscope

SiO2@CdS

J. Coll. Int. Sci. 278 (2004) 107

SiO2@ZnSSurf. Engg. 20, no.4 (2004)

CdS

Gold nanorods

~ 3 nm

Resolution ~ 0.1 nm

Fe2O3 particles (TEM )

Kulkarni et al

Fe2O3 particles

Kulkarni et al

(TEM)

SiO2 particles (~ 250 nm) prepared formaking core-shell particles orfunctional materials

Kulkarni et al

Silver Nanoshells (TEM)

CdSe Rods

(TEM)

Kulkarni et al

Silica Tubes Coated with Silver Nanoparticles

Wavelength (nm)

300 400 500 600 700 800

300 400 500 6000.0

0.1

0.2

0.3

Inte

nsi

ty (

arb

u

nit

s)

425 nm398 nm

Kulkarni et al

Nano Materials,Characterization Techniques

Scanning Tunneling Microscope

Atoms on silicon surface

Nano Materials,Characterization Techniques

laser

metal tip

Atomic Force Microscope

AFM Images of Candida bombicola cells immobilized on Al-Membrane

Height Friction

3D Images

SEM Images at Low and High magnification of Immobilized Candida bombicola Cells on Al-Membrane

Candida bombicola Cells

Kulkarni et al

Nano Materials,Characterization Techniques

Size and Structure Analysis

Nano Materials,Characterization Techniques

2

Monochromatic x-ray beam

x-ray tube

sample

detector

Schematic of X-ray Diffractometer.

Determination of Size and Structure

Nano Materials,Characterization Techniques

X-Ray Diffraction (XRD)

I

0

I

0

I

0

I

0

X-rays

X-rays

X-rays

X-rays

X-rays

gas

liquid

amorphous solid

single crystal

nanocrystal Sulabha Kulkarni,Nanotechnology

Principles and Practices

Nano Materials,Characterization Techniques

T

S

2

Intensity

Imax

½*Ima

x

2B

21

22

B

2

1

d

N

MLN′

M′ L′

DA C A′

B′D′

C′

B

O

P

B

T

cos

9.0

Scherrer formula for average size determination

Sulabha Kulkarni,NanotechnologyPrinciples and Practices

Nano Materials,Characterization Techniques

Kulkarni et al

Analysis of ZnS (1.4 nm) Nanoparticles

Nano Materials,Characterization Techniques

0.00 0.05 0.10 0.15 0.20

1

2

3

4

5

Fited line

S (nm-1)

log

I (a

. u.)

◊ Gold (NPs) 22 nm∆ 10% Au-PMMA 38 nm□ 20% Au-PMMA 39 nm○ 40% Au-PMMA 39 nm

Small Angle X-ray Scattering (SAXS)

Size and Shape Determination

Sizes ~ 100 – 5 nm

Fractal Dimensions

Kulkarni et al Nanotechnology (2006)

Nano Materials,Characterization Techniques

h

h = Ek + EB

Composition AnalysisESCA

Sulabha Kulkarni,NanotechnologyPrinciples and Practices

Nano Materials,Characterization Techniques

Ga3d As3d

h=1486.6 eV

As3dGa3d

Using Al target

Using Synchrotron(55 eV)

XPS

Nano Materials,Characterization Techniques

Some Characteristics of Synchrotron Radiation

Petman,BESSY

What is Synchrotron Radiation?

Nano Materials,Characterization Techniques

INDUS-I(400 MeV )

SPRING-8 (8 GeV )

Photon Factory

ESRF(6 GeV )

DARES BURY

Synchrotron Sources

ELETTRA BESSYIIINDUS-II

Nano Materials,Characterization Techniques

166 165 164 163 162 161 160

Photoemission Spectra

CdS Nanoparticles

S 2p

x2

x2

(d=2.7nm)

x2

x3

(d=4.0nm)

a) hn =500 eV

(Ekin

=338eV)

b) hn =203 eV

(Ekin

=41eV)

S 2p

IIIII

I

Inte

nsity (a. u.)

Binding Energy (eV)166 165 164 163 162 161 160

S 2p

IV

III

II

I

b

a

S 2p

c) hn =500 eV

(Ekin

=338eV)

d) hn =203 eV

(Ekin

=41eV)

I

IIIII

IV

IIIII

I

166 165 164 163 162 161

x2

x3

x2

(d=7.0nm)

S 2p

IIIII

I

(a) hn =500 eV (E

kin=338eV)

(b) hn =203 eV (E

kin=41eV)

Inte

nsit

y (a

. u.)

Binding Energy (eV)

Photoemission Spectra CdS Nanoparticles

I

II

III

Binding Energy (eV)

S 2p Spectra of CdS Nanoparticles

S 2p

Sox.

Sox.

Sox.

7.0 nm

4.0 nm

2.7 nm

hn =203 eV

Binding Energy (eV)

Inte

nsit

y (

a.

u.)

Appl. Surf. Sci. 169-170(2003)438CPL 306 (1999)95Phys. Stat. Sol. 173 (1999)253

Electronic Structure of CdS Nanoparticles Valence Band and

NEXAFS MeasurementsObservation of Band Gap Variation with Size

Expts at BESSY

VBPES (h = 200 eV) BESSY Annual Report (2004) 97

161.5 eV

1.5 eV

EOptical 4.3 eV

4.3 eV

163 eV

CdS-NP

VBM

CBM

Ef

3.5 eV

162.7 eV

3.8 eV

1.2 eV

3.3 eV

162.5 eV

1 eV

2.7 eV

2.3 nm1.8 nm1.1 nm

S 2pBulk

Concentration mapping Of

a single semiconductor quantum dot

Ge / Si (111)

Kulkarni et al, Phys Rev Lett (2006) Small (2006)

Nano Materials,Characterization Techniques

Analysis of Metal, Semiconductor Nanoparticles

Some Quick Methods

Nano Materials,Characterization Techniques

M o n o

Sample Detector

U V

Sample Chamber

Monochromator

Detector

Reference

Sample

Chopper

Optical (UV-Vis-NIR) Spectrometer

Absorption Spectra of Gold Nanoparticles

Nano Materials,Characterization Techniques

EgEgEg

Effect of Size Variation on Energy Gap in Semiconducors

Kulkarni et alAppl. Surf. Sci. 169-170(2003)438CPL 306 (1999)95Phys. Stat. Sol. 173 (1999)253

CdS Nanoparticles

Nano Materials,Characterization Techniques

Surface Plasmon Resonance

Xia et al. MRS Bull 30 (2005)338

Optical Properties of Metal Nanoparticles

Haes et al. MRS Bull 30 (2005) 368

Size Dependent Shifts (Au)

Shape Dependent Shifts (Au)

Kulkarni et al

Kulkarni et al, CPL 404 (2005) 136

Immunoassay for the detection of antibody using silica silver core shell

particles

300 400 500 600 7000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

453 nm

431 nm

494 nm

457 nm

Wavelength (nm)

Inte

nsit

y

A

1m

B

1m

C

1m

D

1m

0.5 m

300 400 500 600 700 800

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No cell

105 cells10 cells102 cells103 cells1010 cells108 cells

Inte

ns

ity

(Arb

. Un

it)

Wavelength (nm)

Kulkarni et al. SMALL 2 (2005)335

Rapid Detection of E. Coli using Silver Nanoshells

300 400 500 600 7000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 300 600 900 1200

0.55

0.60

0.65

0.70

0.75

0.80

0.85

458 nm

443 nm

Inte

nsi

ty /

(Arb

.Un

it)

/ nm

D

CB

A

Inte

nsi

ty (

A. U

.)

(g)Amount of Antibody

300 400 500 600 700

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

with Pseudomonas

with Antibody

Inte

nsi

ty /

(Arb

. Un

it)

/ nm

Silver NanoshellsSilver Nanoshells

Silver Nanoshellswith BacillusSilver Nanoshells

300 400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Mixed with E. coli

Silver Nanoshells Silver nanoshells

Inte

nsi

ty /

(Arb

. Un

it)

/ nm

Specific, Sensitive and Rapid detection using Silver Nanoshells

Interaction of nanoshells with antibodies

Detection is specific forE. coli, presence of anyother microorganism thanE. coli could not be detected

Presence of Antibodies is necessary for couplingE. coli to the nanshells

Kulkarni et al. SMALL 2 (2005) 335

Detection of Toxic Ions Using Nanoshells

Detection of Hg2+ and Zn2+ using silica core silver shell particles

300 400 500 600 7000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Inte

nsit

y (

Arb

. U

nit

s)

wavelength (nm)

No HgCl2

0.05 ml 0.1 ml 0.2 ml 0.3 ml 0.5 ml

300 400 500 600 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Inte

nsit

y (

Arb

. U

nit

s)

wavelength (nm)

No ZnCl2

0.05 ml 0.1 ml 0.2 ml 0.3 ml 0.5 ml 1 ml 2 ml 3 ml 5 ml

Kulkarni et al

Detection of Toxic Ions Using Nanoshells

Detection of Cd2+ and Pb2+ using silica core silver shell particles

300 400 500 600 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Inte

nsit

y (

Arb

. U

nit

s)

wavelength (nm)

No CdAc 0.05 ml 0.1 ml 0.2 ml 0.3 ml 0.5 ml 1 ml 2 ml 3 ml 5 ml 8 ml 10 ml

400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Inte

nsit

y (

Arb

. U

nit

s)

Wavelength (nm)

No PbCl2

0.05 ml 0.1 ml 0.2 ml 0.3 ml 0.5 ml 0.7 ml 0.8 ml 0.9 ml 1 ml

Kulkarni et al

Nano Materials,Characterization Techniques

UV light

CdSe Nanoparticles (<10 nm)

400 500 600 700 800

40 Min

30 Min

0 Min

10 Min

20 Min

Wavelength (nm)

Optical absorption

Kulkarni et al

Photoluminescence

Defect States

Defect States

Dopants d-States

Dopants d-States

Orange emission

Blueemission

Radiationless decay

Excit

ati

on

Valence Band (HOMO)

Conduction Band (LUMO)B

an

d E

dg

e L

um

inescen

ce

Core-Shell Particles - ZnS:Mn@SiO2

TEMSiO2

ZnS:Mn@SiO2

Photoluminescence

800 nm250 nm

Photoluminescence EnhancementESR of ZnS:Mn Nanoparticles

APL67 (11995)2506Phys. Rev.B60 (1999)8659

JCP 118 (2003) 8945 & also chosen by

Virtual J. Nano. Sci. & Nanotech. 7 (2003)

Variation of Mn Concentration

J. Lumin.114 (2005) 15

Entrapment of Dye Molecules inside Silica particles

Nano Materials,Characterization Techniques

Fixed Mirror

Source

Sample

Detector

Beam Splitter

Movable Mirror

FTIR Spectrometer

Surface modified Silica Particles

Use of 3-Aminopropyltriethoxysilane (APS) to functionalize the surface

Synthesis of Core-Shell Particles

Silica ParticlesTEOS (Tetraethylorthosilicate)

+ Ethanol+ Ammonium Hydroxide+ Water

Thioglycerol (TG) cappedZnS / CdS nanoparticlesSalts of Zn / Cd + TG + Na2S

Size selective precipitation

Core shell particlesAttachment of TG capped

nanoparticles to functionalized silica particles

Kulkarni et alJ. Coll. Int. Sci. 278 (2004) 107

HSCH2CHCH2OH | OH

Thiogycerol(TG)

OCH3

|NH2(CH2)3SiOCH3

| OCH3

3-aminopropyltrimethoxysilane

(APS)

OCH3

|SCH2CHCH2ON(CH2)3SiO | OH

TG capped CdS Nanoparticle attached to APS functionalised SiO2particle

CdS SiO2

SCH2CHCH2OH | OH

TG capped CdS Nanoparticle

CdS SiO2

OCH3

|NH2(CH2)3SiO | OCH3

3-aminopropyltrimethoxysilane

(APS)

Analysis of SiO2@CdS Particles

450 900 1350 1800 2250

C-O

C-C

C-NS

i-O

HS

i-O

H

Si-

O-S

iS

i-O

-Si

C=O,OH

C

B

Tra

nsm

itta

nc

e(%

)

Wave number (cm-1)

A

NH

NHC

H

C-O

C-C

C-N

NH

NO

3

C=

H

C=

O

C-O

C-C

C-N

CH

NH

OH

C=

OC

=C

C=

N

E

OH

CH

OH

C=

OC

=C

C=

N

C-O

C-C

C-N

D

Silver nanoshells

Antibodies – silver nanoshells

antibodies

E. coli with antibody-silvernanoshells

E. coli

FTIR Spectra for E. Coli Investigations

Kulkarni et al. SMALL (2005)335

top related