digital integrated circuits a design perspective

Post on 30-Dec-2015

21 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, 2002. Goal of this chapter. Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis - PowerPoint PPT Presentation

TRANSCRIPT

EE1411

© Digital Integrated Circuits2nd Devices

Digital Integrated Digital Integrated CircuitsCircuitsA Design PerspectiveA Design Perspective

The DevicesThe Devices

Jan M. RabaeyAnantha ChandrakasanBorivoje Nikolic

July 30, 2002

EE1412

© Digital Integrated Circuits2nd Devices

Goal of this chapterGoal of this chapter

Present intuitive understanding of device operation

Introduction of basic device equations Introduction of models for manual

analysis Introduction of models for SPICE

simulation Analysis of secondary and deep-sub-

micron effects Future trends

EE1413

© Digital Integrated Circuits2nd Devices

The DiodeThe Diode

n

p

p

n

B A SiO2Al

A

B

Al

A

B

Cross-section of pn-junction in an IC process

One-dimensionalrepresentation diode symbol

Mostly occurring as parasitic element in Digital ICs

EE1414

© Digital Integrated Circuits2nd Devices

Depletion RegionDepletion Regionhole diffusion

electron diffusion

p n

hole driftelectron drift

ChargeDensity

Distancex+

-

ElectricalxField

x

PotentialV

W2-W1

(a) Current flow.

(b) Charge density.

(c) Electric field.

(d) Electrostaticpotential.

EE1415

© Digital Integrated Circuits2nd Devices

Diode CurrentDiode Current

EE1416

© Digital Integrated Circuits2nd Devices

Forward BiasForward Bias

x

pn0

np0

-W1 W20p n

(W2)

n-regionp-region

Lp

diffusion

Typically avoided in Digital ICs

EE1417

© Digital Integrated Circuits2nd Devices

Reverse BiasReverse Bias

x

pn0

np0

-W1 W20n-regionp-region

diffusion

The Dominant Operation Mode

EE1418

© Digital Integrated Circuits2nd Devices

Models for Manual AnalysisModels for Manual Analysis

VD

ID = IS(eVD/T – 1)+

VD

+

+

–VDon

ID

(a) Ideal diode model (b) First-order diode model

EE1419

© Digital Integrated Circuits2nd Devices

Junction CapacitanceJunction Capacitance

EE14110

© Digital Integrated Circuits2nd Devices

Diffusion CapacitanceDiffusion Capacitance

EE14111

© Digital Integrated Circuits2nd Devices

Secondary EffectsSecondary Effects

–25.0 –15.0 –5.0 5.0

VD (V)

–0.1

I D (A

)

0.1

0

0

Avalanche Breakdown

EE14112

© Digital Integrated Circuits2nd Devices

Diode ModelDiode Model

ID

RS

CD

+

-

VD

EE14113

© Digital Integrated Circuits2nd Devices

SPICE ParametersSPICE Parameters

EE14114

© Digital Integrated Circuits2nd Devices

What is a Transistor?What is a Transistor?

VGS VT

RonS D

A Switch!

|VGS|

An MOS Transistor

EE14115

© Digital Integrated Circuits2nd Devices

The MOS TransistorThe MOS Transistor

Polysilicon Aluminum

EE14116

© Digital Integrated Circuits2nd Devices

MOS Transistors -MOS Transistors -Types and SymbolsTypes and Symbols

D

S

G

D

S

G

G

S

D D

S

G

NMOS Enhancement NMOS

PMOS

Depletion

Enhancement

B

NMOS withBulk Contact

EE14117

© Digital Integrated Circuits2nd Devices

Threshold Voltage: ConceptThreshold Voltage: Concept

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

EE14118

© Digital Integrated Circuits2nd Devices

The Threshold VoltageThe Threshold Voltage

EE14119

© Digital Integrated Circuits2nd Devices

The Body EffectThe Body Effect

-2.5 -2 -1.5 -1 -0.5 00.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

VBS

(V)

VT (

V)

EE14120

© Digital Integrated Circuits2nd Devices

Current-Voltage RelationsCurrent-Voltage RelationsA good ol’ transistorA good ol’ transistor

QuadraticRelationship

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VDS (V)

I D (

A)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

EE14121

© Digital Integrated Circuits2nd Devices

Transistor in LinearTransistor in Linear

n+n+

p-substrate

D

SG

B

VGS

xL

V(x) +–

VDS

ID

MOS transistor and its bias conditions

EE14122

© Digital Integrated Circuits2nd Devices

Transistor in SaturationTransistor in Saturation

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

Pinch-off

EE14123

© Digital Integrated Circuits2nd Devices

Current-Voltage RelationsCurrent-Voltage RelationsLong-Channel DeviceLong-Channel Device

EE14124

© Digital Integrated Circuits2nd Devices

A model for manual analysisA model for manual analysis

EE14125

© Digital Integrated Circuits2nd Devices

Current-Voltage RelationsCurrent-Voltage RelationsThe Deep-Submicron EraThe Deep-Submicron Era

LinearRelationship

-4

VDS (V)0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5x 10

I D (

A)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Early Saturation

EE14126

© Digital Integrated Circuits2nd Devices

Velocity SaturationVelocity Saturation

(V/µm)c = 1.5

n

(m/s

)

sat = 105

Constant mobility (slope = µ)

Constant velocity

EE14127

© Digital Integrated Circuits2nd Devices

PerspectivePerspective

IDLong-channel device

Short-channel device

VDSVDSAT VGS - VT

VGS = VDD

EE14128

© Digital Integrated Circuits2nd Devices

IIDD versus V versus VGSGS

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VGS (V)

I D (

A)

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

VGS (V)

I D (

A)

quadratic

quadratic

linear

Long Channel Short Channel

EE14129

© Digital Integrated Circuits2nd Devices

IIDD versus V versus VDSDS

-4

VDS (V)0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5x 10

I D (

A)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VDS (V)

I D (

A)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

ResistiveSaturation

VDS = VGS - VT

Long Channel Short Channel

EE14130

© Digital Integrated Circuits2nd Devices

A unified modelA unified modelfor manual analysisfor manual analysis

S D

G

B

EE14131

© Digital Integrated Circuits2nd Devices

Simple Model versus SPICE Simple Model versus SPICE

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

VDS

(V)

I D (

A)

VelocitySaturated

Linear

Saturated

VDSAT=VGT

VDS=VDSAT

VDS=VGT

EE14132

© Digital Integrated Circuits2nd Devices

A PMOS TransistorA PMOS Transistor

-2.5 -2 -1.5 -1 -0.5 0-1

-0.8

-0.6

-0.4

-0.2

0x 10

-4

VDS (V)

I D (

A)

Assume all variablesnegative!

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V

EE14133

© Digital Integrated Circuits2nd Devices

Transistor Model Transistor Model for Manual Analysisfor Manual Analysis

EE14134

© Digital Integrated Circuits2nd Devices

The Transistor as a SwitchThe Transistor as a Switch

VGS VT

RonS D

ID

VDS

VGS = VD D

VDD/2 VDD

R0

Rmid

ID

VDS

VGS = VD D

VDD/2 VDD

R0

Rmid

EE14135

© Digital Integrated Circuits2nd Devices

The Transistor as a SwitchThe Transistor as a Switch

0.5 1 1.5 2 2.50

1

2

3

4

5

6

7x 10

5

VDD

(V)

Req

(O

hm)

EE14136

© Digital Integrated Circuits2nd Devices

The Transistor as a SwitchThe Transistor as a Switch

EE14137

© Digital Integrated Circuits2nd Devices

The Sub-Micron MOS TransistorThe Sub-Micron MOS Transistor

Threshold Variations Subthreshold Conduction Parasitic Resistances

EE14138

© Digital Integrated Circuits2nd Devices

Threshold VariationsThreshold Variations

VT

L

Long-channel threshold Low VDS threshold

Threshold as a function of the length (for low VDS)

Drain-induced barrier lowering (for low L)

VDS

VT

EE14139

© Digital Integrated Circuits2nd Devices

Sub-Threshold ConductionSub-Threshold Conduction

0 0.5 1 1.5 2 2.510

-12

10-10

10-8

10-6

10-4

10-2

VGS (V)

I D (

A)

VT

Linear

Exponential

Quadratic

Typical values for S:60 .. 100 mV/decade

The Slope Factor

ox

DnkT

qV

D C

CneII

GS

1 ,~ 0

S is VGS for ID2/ID1 =10

EE14140

© Digital Integrated Circuits2nd Devices

Sub-Threshold Sub-Threshold IIDD vs vs VVGSGS

VDS from 0 to 0.5V

kT

qV

nkT

qV

D

DSGS

eeII 10

EE14141

© Digital Integrated Circuits2nd Devices

Sub-Threshold Sub-Threshold IIDD vs vs VVDSDS

DSkT

qV

nkT

qV

D VeeIIDSGS

110

VGS from 0 to 0.3V

EE14142

© Digital Integrated Circuits2nd Devices

Summary of MOSFET Operating Summary of MOSFET Operating RegionsRegions

Strong Inversion VGS > VT

Linear (Resistive) VDS < VDSAT

Saturated (Constant Current) VDS VDSAT

Weak Inversion (Sub-Threshold) VGS VT

Exponential in VGS with linear VDS dependence

EE14143

© Digital Integrated Circuits2nd Devices

Parasitic ResistancesParasitic Resistances

W

LD

Drain

Draincontact

Polysilicon gate

DS

G

RS RD

VGS,eff

EE14144

© Digital Integrated Circuits2nd Devices

Latch-upLatch-up

EE14145

© Digital Integrated Circuits2nd Devices

Future PerspectivesFuture Perspectives

25 nm FINFET MOS transistor

top related