cosmic jets andreas müller amueller/ 12. 12. 2002 theoriegruppe prof. camenzind landessternwarte...

Post on 16-Jan-2016

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Cosmic JetsCosmic Jets

Andreas MüllerAndreas Müller

http://www.lsw.uni-heidelberg.de/~amueller/http://www.lsw.uni-heidelberg.de/~amueller/12. 12. 12. 12. 20022002

Theoriegruppe Theoriegruppe

Prof. CamenzindProf. CamenzindLandessternwarte Landessternwarte

Königstuhl, HeidelbergKönigstuhl, Heidelberg

as sources for as sources for high-energetichigh-energetic

NeutrinosNeutrinos

OverviewOverview Motivation The AGN paradigm Jet physics: Formation, collimation, morphology Particle acceleration Jet simulations and sources Relativistic leptonic and hadronic Jets Ultra-relativistic GRB Jets Cosmic Rays Proton Blazars AGN neutrino flux Microquasars Microquasar neutrino fluxes Implications of UHE neutrino astronomy Surprise!

p + p + + X CC- + X CC EN > 300 MeV

0 + X NCp + 0 + p photopion production

(inelastic scattering)

p + + + n escape via isospin flip

- - +

++ +

0 +

- e- + e +

+e+ + e +

MotivationMotivation

hadronshadrons

neutrinosneutrinos

Cosmic neutrino sourcesCosmic neutrino sources Galactic sources:

Sgr A* SNSNRsMicroquasars

Extragalactic sources: GRBs GRBRsAGN Jets

constraint: AMANDA threshold 50 GeV

AGN type 1 AGN type 1 multi-wavelength spectrummulti-wavelength spectrum

IR

3 bumps

UVopt X

AGN taxonomyAGN taxonomy

TypeType HostHost VariabilityVariability SpectrumSpectrum JetsJets SourcesSources

QuasarQuasar all days

Optical: point source, dichotomy in radio loud and radio quiet, emission lines, IR-, UV-excess, hard X

strong3C 273, 3C 48,SDSS 1030+0524 (z = 6.28)

BlazarBlazar

(+ BQ)(+ BQ)Elliptical days

double-humped (SSA), Xto TeV (IC of UV), highest L, small inc, superluminal jets, compact radio core

strongMrk 501, Mrk 421, 1219+285, 3C 279, H1426+428

BL LacBL Lac Elliptical daysOptical variable, high Lb, no em./abs. lines, strong in radio, max. in LIR

noBL Lac, PKS 2155-304

RadioRadio

GalaxyGalaxyElliptical months

Strong radio, core: flat; jet, lobe and hot spots: steep

strong Cyg A, M87, M82, 3C 219

SeyfertSeyfert

GalaxyGalaxySpiral months

Comptonized continuum, warm abs., em. lines, reflection bump

weakNGC 1068, NGC 4151, MCG-6-30-15

LINERLINER all yes narrow emission lines, O, S, N lines yes NGC 4258

ULIRGULIRGmerging

of all types

yesHigh LIR and LX, Fe K complex, yes

NGC 6240, IRAS 05189-2524

Kerr black hole topologyKerr black hole topology

Jet formation - theoryJet formation - theory

(B. Punsly, BH GHM, Springer 2001)

Kerr black hole vital: frame dragging in ergosphere ergospheric dynamo: creates and sustains toroidal magnetic

flux and currents extraction of rotational energy of Kerr hole outgoing wind driven by MHD Alfvén waves reconnection: plasma decouples from magnetic field as approaching to horizon

(restatement of No-Hair theorem) magnetized accretion disk: energy of accreting plasma powers the wind

Jet formation - simulationJet formation - simulation

(Koide et al., 2001)

log() from 0.1 to 100 color-coded, arrows: velocity,

solid line: magnetic fieldparameters: a = 0.95, t = 65 rS, vJet = 0.93c, = 2.7

MHD-Jet MHD-Jet collimation and accelerationcollimation and acceleration

Lorentz force: electric current in jet plasma toroidal mag. field B

FII: acceleration

total magnetic field B

FI: collimation

additional dependencies: gas pressure centrifugal forces ambient pressure

Particle accelerationParticle acceleration

(ApJS 141, 195-209, 2002, Albuquerque et al.)

Lorentz forces and gas pressure in Jets Fermi accelerationI) 1st order:

relativistic shock waves propagate through turbulent plasma accelerating charged particles

I) 2nd order: stochastical acceleration of particles when diffusing through turbulent plasma

macroscopic kinetic energy of plasma transfered to few charged particles!

shock frontsJets: internal shocks, bow shockGRBs: fireball shockSNs/SNRs: blast wave shock

Jet morphologyJet morphology

Jet simulationJet simulation

M. Krause, LSW HD

t = 1.64 Myr

cocoonshocked ext. mediumbow shock

Jet – emission knotsJet – emission knots

periodic bright knots associated with inner shocks (rarefaction & compression)

complete linear size: 159 kpc z = 1.112

Radio Jet – Cyg ARadio Jet – Cyg A

jet and counter-jet, core, hot spots, lobesSynchrotron emission in radio from relativistic e-

false color image: red is brightest radio, blue fainter.D ~ 200 Mpc

VLA

X-ray Jet – Cyg AX-ray Jet – Cyg A

X-ray cavity formed by powerful jetshot spots clearly visible in 100 kpc distance away from coresurrounding is hot cluster gas T ~ 107 to 108 Kresulting topology: prolate/cigar-shaped cavity

Chandra

Relativistic hadronic Relativistic hadronic and leptonic Jetsand leptonic Jets

(Scheck et al., 2002)log()

surprisingly similar dynamic and morphology!

3 models: BC – baryonic cold

LC – leptonic cold LH – leptonic hot leptonic species: e-e+ (rel.) hadronic species: p, He (th.) Relativistic Hydrodynamics (RHD) in 2D NEC SX-5 Supercomputer jet kinetic power: 1044 to 1047 erg/s typical lifetime: 10 Myr

Relativistic hadronic and Relativistic hadronic and leptonic Jetsleptonic Jets

(Scheck et al., 2002) Lorentz factor after 6.3 Myr

highest

lowest

1.8 s after explosion= 10 v = 0.995c

axis unit: 100 000 km

contour:vr > 0.3c

eint > 0.05 e0

Jet:8° opening angle

Jet core:99.97% c

M.A. Aloy, E. Müller; MPA Garching

Relativistic GRB-JetRelativistic GRB-Jet

outer stellar atmosphere

stellar surface

Cosmic RaysCosmic Rays

(ApJ 425, L1-L4, 1995, Waxman; Waxman & Bahcall, 1999, 2001)

ultra high-energy CR: 1019 eV < E < 1020 eV 1st reported by Fly‘s Eye, AGASA air shower detectors CR sources: homogeneous distributed and cosmological candidates: GRBs (cp. BATSE @ CGRO)

AGN Jets: photo-produced 0 decay to

CR sources generate UHE protons each has power-law differential proton spectrum:

dN/dE ~ E-

spectrum insensitive to source evolution with z and cosmological parameters (H0)

observable constraint: 1.8 < < 2.8 often assumed: = 2.0 neutrinos overtake -value if secondary from p-p reaction! in p- reactions weighting with photon power law WB limit: neutrino flux limited by parental proton energy!

CR spectrumCR spectrum

(astro-ph/0011524, Gaisser)

ECR > 1017 eV

Proton Jet reactionsProton Jet reactions

Proton blazar modelProton blazar model

(astro-ph/9306005, 9502085, 0202074, Mannheim)

non-conservative approach! (alternative to IC of accretion disk thermal UV emission on accelerated electrons) proton acceleration in most powerful AGN Jets power law distribution: np(Ep)~Ep

-s

protons hit

- p-target yields : Qpp(E)~ E

-s neutrino production rate-target yields:

• CMB: Greisen-Zatsepin-Kuz‘min cut-off (1966): Ep < 1019 eV „intergalactic proton“

• Synchrotron spectrum with n(E)~ E-:

Qp(E)~ E

-(s-)

protons undergo unsaturated synchrotron cascades and emit X, electrons: synchrotron contributions drastic steepening of cascade spectrum above

E ~ 100 GeV: absorption of X by host galaxy

IR-photons from dust BUT: neutrinos not dampend!

Proton blazar Proton blazar 1218+2581218+258

(astro-ph/9502085, Mannheim)

fit parameters:

= 7°

jet = 5

p = 2 x 109

= 7

B = 4 G

Data:NEDMontigny et al. 1994Fink et al.Whipple group

Quasar 3C273 –Quasar 3C273 –predicted neutrino fluxpredicted neutrino flux

(astro-ph/0202074, Hettlage & Mannheim)

fluxes

compared with SNRs and Coma galaxy cluster

oscillations neglected!

MicroquasarsMicroquasars

Chandra

hom

epag

e

MicroquasarMicroquasarCyg X-3Cyg X-3 discovery in 1967 (Giacconi et al.) companion: massive Wolf-Rayet as can be observed

from wind in I- and K-band (van Kerkwijk et al., 1992) orbital period: 4.8 h derived from IR and X-ray flux modulation via eclipses (Parsignault et al, 1972;

Mason et al., 1986) TeV source! optical observation possible (extinction in Galactic plane) CO nature:

NS of ~ 1 Mwith 10-7 M/yr and WR with 15 M

(Heuvel & de Loore, 1973)vs.stellar BH with WR of 2.5 M

(Vanbeveren et al., 1998; McCollough, 1999) 1st only one-sided jet (Mioduszewski et al., 1998)

MicroquasarMicroquasarCyg X-3Cyg X-3 evolution sequence of bipolar radio jet binary system: Wolf-Rayet and NS/BH D = 10 kpc = 14° = 0.81

(Mioduszewski et al., 2001)

VLBA

MicroquasarMicroquasarGRS1915+105GRS1915+105

evolution sequence of one-sided radio blob binary system: normal star and BH GBHC: MBH ~ 14 M D = 12.5 kpc = 70° = 0.92!

(Mirabel & Rodriguez, 1994)

VLA

SS 433 - dataSS 433 - data most enigmatic and still unique object in the sky! CO: neutron star or black hole? companion: OB star with 20 M

mass loss rate: 10-4 M/yr (wind) orbital period: 13.1 d persistent source 1977 discovered, constellation Eagle d = 3 kpc i = 79° = 0.26 (nearly const!) no continuous jet: bullets slow wobbling period: 164 d surrounded by diffuse nebular W50 (possible SNR) jet: strong, variable H line emission emission lines doubled estimated: Ljet ~ 1039 erg/s

(ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

SS 433SS 433

SNR W50ASNR W50A

~ 20 cm~ 20 cm

SS 433 in X-rays SS 433 in X-rays

Chandra homepage 11.12. 2002

T ~ 5 x 107 Kd ~ 5 x 1018 km

SS 433 - theorySS 433 - theory bullet ejection model timescale: non-steady shocks in sub-Keplerian accretion flow bullet shooting interval: 50-1000 s donor matter rejection by centrifugal force radiation pressure supported Keplerian disk 15 to 20% of accreted matter is outflow: mean outflow rate: 1018 g/s mean accumulated bullet mass 1019 - 1021 g (moon 1021 g) bullet formation by shock oscillations due to inherent unsteady accretion solutions

(astro-ph/0208148, Chakrabarti et al.)

Microquasars - Microquasars - parametersparameters

(ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

Ljet

S

i

all jets resolved in radio (~280 known XRBs, ~50 radio-loud) SS 433 not present: more complicated model

Microquasars – Microquasars – event predictions event predictions

(ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

strong

periodic

persistent: 1 yr integration time t

pulse

Implications Implications of UHE neutrino astronomyof UHE neutrino astronomy

determination of two-component jet plasma: fixing the ratio of leptonic to hadronic species

„Detection of emitted by AGN would be a smoking gun for hadron acceleration.“ (Hettlage & Mannheim) deeper insight in Jet physics generally better understanding of microquasar physics detection of low-inclined radio-hidden microquasars verification of neutrino oscillations on cosmological scales clarification of neutrinos as Majorana particles CR mapping new issues for the origin of UHE cosmic rays

Most distant AGNMost distant AGN

SDSS quasars in 13 billion lightyears distanceemission starts as Universe was 1 billion years old!MBH ~ 1010 M(Brandt et al., 2002)

Chandra

top related