cosmic jets andreas müller amueller/ 12. 12. 2002 theoriegruppe prof. camenzind landessternwarte...

40
Cosmic Jets Cosmic Jets Andreas Müller Andreas Müller http://www.lsw.uni-heidelberg.de/ http://www.lsw.uni-heidelberg.de/ ~amueller/ ~amueller/ 12. 12. 12. 12. 2002 2002 Theoriegruppe Theoriegruppe Prof. Camenzind Prof. Camenzind Landessternwarte Landessternwarte Königstuhl, Königstuhl, Heidelberg Heidelberg as sources for as sources for high-energetic high-energetic Neutrinos Neutrinos

Upload: gillian-sparks

Post on 16-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Cosmic JetsCosmic Jets

Andreas MüllerAndreas Müller

http://www.lsw.uni-heidelberg.de/~amueller/http://www.lsw.uni-heidelberg.de/~amueller/12. 12. 12. 12. 20022002

Theoriegruppe Theoriegruppe

Prof. CamenzindProf. CamenzindLandessternwarte Landessternwarte

Königstuhl, HeidelbergKönigstuhl, Heidelberg

as sources for as sources for high-energetichigh-energetic

NeutrinosNeutrinos

Page 2: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

OverviewOverview Motivation The AGN paradigm Jet physics: Formation, collimation, morphology Particle acceleration Jet simulations and sources Relativistic leptonic and hadronic Jets Ultra-relativistic GRB Jets Cosmic Rays Proton Blazars AGN neutrino flux Microquasars Microquasar neutrino fluxes Implications of UHE neutrino astronomy Surprise!

Page 3: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

p + p + + X CC- + X CC EN > 300 MeV

0 + X NCp + 0 + p photopion production

(inelastic scattering)

p + + + n escape via isospin flip

- - +

++ +

0 +

- e- + e +

+e+ + e +

MotivationMotivation

hadronshadrons

neutrinosneutrinos

Page 4: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Cosmic neutrino sourcesCosmic neutrino sources Galactic sources:

Sgr A* SNSNRsMicroquasars

Extragalactic sources: GRBs GRBRsAGN Jets

constraint: AMANDA threshold 50 GeV

Page 5: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg
Page 6: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

AGN type 1 AGN type 1 multi-wavelength spectrummulti-wavelength spectrum

IR

3 bumps

UVopt X

Page 7: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

AGN taxonomyAGN taxonomy

TypeType HostHost VariabilityVariability SpectrumSpectrum JetsJets SourcesSources

QuasarQuasar all days

Optical: point source, dichotomy in radio loud and radio quiet, emission lines, IR-, UV-excess, hard X

strong3C 273, 3C 48,SDSS 1030+0524 (z = 6.28)

BlazarBlazar

(+ BQ)(+ BQ)Elliptical days

double-humped (SSA), Xto TeV (IC of UV), highest L, small inc, superluminal jets, compact radio core

strongMrk 501, Mrk 421, 1219+285, 3C 279, H1426+428

BL LacBL Lac Elliptical daysOptical variable, high Lb, no em./abs. lines, strong in radio, max. in LIR

noBL Lac, PKS 2155-304

RadioRadio

GalaxyGalaxyElliptical months

Strong radio, core: flat; jet, lobe and hot spots: steep

strong Cyg A, M87, M82, 3C 219

SeyfertSeyfert

GalaxyGalaxySpiral months

Comptonized continuum, warm abs., em. lines, reflection bump

weakNGC 1068, NGC 4151, MCG-6-30-15

LINERLINER all yes narrow emission lines, O, S, N lines yes NGC 4258

ULIRGULIRGmerging

of all types

yesHigh LIR and LX, Fe K complex, yes

NGC 6240, IRAS 05189-2524

Page 8: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Kerr black hole topologyKerr black hole topology

Page 9: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Jet formation - theoryJet formation - theory

(B. Punsly, BH GHM, Springer 2001)

Kerr black hole vital: frame dragging in ergosphere ergospheric dynamo: creates and sustains toroidal magnetic

flux and currents extraction of rotational energy of Kerr hole outgoing wind driven by MHD Alfvén waves reconnection: plasma decouples from magnetic field as approaching to horizon

(restatement of No-Hair theorem) magnetized accretion disk: energy of accreting plasma powers the wind

Page 10: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg
Page 11: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Jet formation - simulationJet formation - simulation

(Koide et al., 2001)

log() from 0.1 to 100 color-coded, arrows: velocity,

solid line: magnetic fieldparameters: a = 0.95, t = 65 rS, vJet = 0.93c, = 2.7

Page 12: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

MHD-Jet MHD-Jet collimation and accelerationcollimation and acceleration

Lorentz force: electric current in jet plasma toroidal mag. field B

FII: acceleration

total magnetic field B

FI: collimation

additional dependencies: gas pressure centrifugal forces ambient pressure

Page 13: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Particle accelerationParticle acceleration

(ApJS 141, 195-209, 2002, Albuquerque et al.)

Lorentz forces and gas pressure in Jets Fermi accelerationI) 1st order:

relativistic shock waves propagate through turbulent plasma accelerating charged particles

I) 2nd order: stochastical acceleration of particles when diffusing through turbulent plasma

macroscopic kinetic energy of plasma transfered to few charged particles!

shock frontsJets: internal shocks, bow shockGRBs: fireball shockSNs/SNRs: blast wave shock

Page 14: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Jet morphologyJet morphology

Page 15: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Jet simulationJet simulation

M. Krause, LSW HD

t = 1.64 Myr

cocoonshocked ext. mediumbow shock

Page 16: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Jet – emission knotsJet – emission knots

periodic bright knots associated with inner shocks (rarefaction & compression)

complete linear size: 159 kpc z = 1.112

Page 17: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Radio Jet – Cyg ARadio Jet – Cyg A

jet and counter-jet, core, hot spots, lobesSynchrotron emission in radio from relativistic e-

false color image: red is brightest radio, blue fainter.D ~ 200 Mpc

VLA

Page 18: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

X-ray Jet – Cyg AX-ray Jet – Cyg A

X-ray cavity formed by powerful jetshot spots clearly visible in 100 kpc distance away from coresurrounding is hot cluster gas T ~ 107 to 108 Kresulting topology: prolate/cigar-shaped cavity

Chandra

Page 19: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Relativistic hadronic Relativistic hadronic and leptonic Jetsand leptonic Jets

(Scheck et al., 2002)log()

surprisingly similar dynamic and morphology!

3 models: BC – baryonic cold

LC – leptonic cold LH – leptonic hot leptonic species: e-e+ (rel.) hadronic species: p, He (th.) Relativistic Hydrodynamics (RHD) in 2D NEC SX-5 Supercomputer jet kinetic power: 1044 to 1047 erg/s typical lifetime: 10 Myr

Page 20: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Relativistic hadronic and Relativistic hadronic and leptonic Jetsleptonic Jets

(Scheck et al., 2002) Lorentz factor after 6.3 Myr

highest

lowest

Page 21: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

1.8 s after explosion= 10 v = 0.995c

axis unit: 100 000 km

contour:vr > 0.3c

eint > 0.05 e0

Jet:8° opening angle

Jet core:99.97% c

M.A. Aloy, E. Müller; MPA Garching

Relativistic GRB-JetRelativistic GRB-Jet

outer stellar atmosphere

stellar surface

Page 22: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Cosmic RaysCosmic Rays

(ApJ 425, L1-L4, 1995, Waxman; Waxman & Bahcall, 1999, 2001)

ultra high-energy CR: 1019 eV < E < 1020 eV 1st reported by Fly‘s Eye, AGASA air shower detectors CR sources: homogeneous distributed and cosmological candidates: GRBs (cp. BATSE @ CGRO)

AGN Jets: photo-produced 0 decay to

CR sources generate UHE protons each has power-law differential proton spectrum:

dN/dE ~ E-

spectrum insensitive to source evolution with z and cosmological parameters (H0)

observable constraint: 1.8 < < 2.8 often assumed: = 2.0 neutrinos overtake -value if secondary from p-p reaction! in p- reactions weighting with photon power law WB limit: neutrino flux limited by parental proton energy!

Page 23: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

CR spectrumCR spectrum

(astro-ph/0011524, Gaisser)

ECR > 1017 eV

Page 24: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Proton Jet reactionsProton Jet reactions

Page 25: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Proton blazar modelProton blazar model

(astro-ph/9306005, 9502085, 0202074, Mannheim)

non-conservative approach! (alternative to IC of accretion disk thermal UV emission on accelerated electrons) proton acceleration in most powerful AGN Jets power law distribution: np(Ep)~Ep

-s

protons hit

- p-target yields : Qpp(E)~ E

-s neutrino production rate-target yields:

• CMB: Greisen-Zatsepin-Kuz‘min cut-off (1966): Ep < 1019 eV „intergalactic proton“

• Synchrotron spectrum with n(E)~ E-:

Qp(E)~ E

-(s-)

protons undergo unsaturated synchrotron cascades and emit X, electrons: synchrotron contributions drastic steepening of cascade spectrum above

E ~ 100 GeV: absorption of X by host galaxy

IR-photons from dust BUT: neutrinos not dampend!

Page 26: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Proton blazar Proton blazar 1218+2581218+258

(astro-ph/9502085, Mannheim)

fit parameters:

= 7°

jet = 5

p = 2 x 109

= 7

B = 4 G

Data:NEDMontigny et al. 1994Fink et al.Whipple group

Page 27: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Quasar 3C273 –Quasar 3C273 –predicted neutrino fluxpredicted neutrino flux

(astro-ph/0202074, Hettlage & Mannheim)

fluxes

compared with SNRs and Coma galaxy cluster

oscillations neglected!

Page 28: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

MicroquasarsMicroquasars

Chandra

hom

epag

e

Page 29: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

MicroquasarMicroquasarCyg X-3Cyg X-3 discovery in 1967 (Giacconi et al.) companion: massive Wolf-Rayet as can be observed

from wind in I- and K-band (van Kerkwijk et al., 1992) orbital period: 4.8 h derived from IR and X-ray flux modulation via eclipses (Parsignault et al, 1972;

Mason et al., 1986) TeV source! optical observation possible (extinction in Galactic plane) CO nature:

NS of ~ 1 Mwith 10-7 M/yr and WR with 15 M

(Heuvel & de Loore, 1973)vs.stellar BH with WR of 2.5 M

(Vanbeveren et al., 1998; McCollough, 1999) 1st only one-sided jet (Mioduszewski et al., 1998)

Page 30: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

MicroquasarMicroquasarCyg X-3Cyg X-3 evolution sequence of bipolar radio jet binary system: Wolf-Rayet and NS/BH D = 10 kpc = 14° = 0.81

(Mioduszewski et al., 2001)

VLBA

Page 31: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

MicroquasarMicroquasarGRS1915+105GRS1915+105

evolution sequence of one-sided radio blob binary system: normal star and BH GBHC: MBH ~ 14 M D = 12.5 kpc = 70° = 0.92!

(Mirabel & Rodriguez, 1994)

VLA

Page 32: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

SS 433 - dataSS 433 - data most enigmatic and still unique object in the sky! CO: neutron star or black hole? companion: OB star with 20 M

mass loss rate: 10-4 M/yr (wind) orbital period: 13.1 d persistent source 1977 discovered, constellation Eagle d = 3 kpc i = 79° = 0.26 (nearly const!) no continuous jet: bullets slow wobbling period: 164 d surrounded by diffuse nebular W50 (possible SNR) jet: strong, variable H line emission emission lines doubled estimated: Ljet ~ 1039 erg/s

(ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

Page 33: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

SS 433SS 433

SNR W50ASNR W50A

~ 20 cm~ 20 cm

Page 34: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg
Page 35: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

SS 433 in X-rays SS 433 in X-rays

Chandra homepage 11.12. 2002

T ~ 5 x 107 Kd ~ 5 x 1018 km

Page 36: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

SS 433 - theorySS 433 - theory bullet ejection model timescale: non-steady shocks in sub-Keplerian accretion flow bullet shooting interval: 50-1000 s donor matter rejection by centrifugal force radiation pressure supported Keplerian disk 15 to 20% of accreted matter is outflow: mean outflow rate: 1018 g/s mean accumulated bullet mass 1019 - 1021 g (moon 1021 g) bullet formation by shock oscillations due to inherent unsteady accretion solutions

(astro-ph/0208148, Chakrabarti et al.)

Page 37: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Microquasars - Microquasars - parametersparameters

(ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

Ljet

S

i

all jets resolved in radio (~280 known XRBs, ~50 radio-loud) SS 433 not present: more complicated model

Page 38: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Microquasars – Microquasars – event predictions event predictions

(ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

strong

periodic

persistent: 1 yr integration time t

pulse

Page 39: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Implications Implications of UHE neutrino astronomyof UHE neutrino astronomy

determination of two-component jet plasma: fixing the ratio of leptonic to hadronic species

„Detection of emitted by AGN would be a smoking gun for hadron acceleration.“ (Hettlage & Mannheim) deeper insight in Jet physics generally better understanding of microquasar physics detection of low-inclined radio-hidden microquasars verification of neutrino oscillations on cosmological scales clarification of neutrinos as Majorana particles CR mapping new issues for the origin of UHE cosmic rays

Page 40: Cosmic Jets Andreas Müller amueller/ 12. 12. 2002 Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg

Most distant AGNMost distant AGN

SDSS quasars in 13 billion lightyears distanceemission starts as Universe was 1 billion years old!MBH ~ 1010 M(Brandt et al., 2002)

Chandra