collective states and transitional behavior in schooling fish...local rules and emergent behavior...

Post on 20-May-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Collective states and transitional behavior in schooling fish

Collective Animal Behavior

CouzinLab@PrincetonUniversity

KOLBJØRN TUNSTRØM

Local rules and emergent behavior

Couzin, I.D. et al., 2002. Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218(1), pp.1–11.

Experiments: schooling fish in 2D environment

30 fish

70 fish

150 fish

300 fish

2.1 m

1.2

m

Water depth: 5 cm

•Notemigonus crysoleucas (golden shiners) •30-150 fish: 7 replicates of 56 min each •300 fish: 3 replicates of 56 min each •Video frame rate: 30 fps

1.2

m

16x normal speed

30 fish 70 fish 30 fish30 fish

150 fish 300 fish

Collective states

Swarm (S) Polarized (P)Milling (M)

Low dimensional representation: Order parameters

Rotational order parameter:

Polarization order parameter:

Swarm (S) Milling (M) Polarized (P)

Or =1

N

NX

i=1

|ui ⇥ ncm,i|

Op =1

N

NX

i=1

|ui|

Time series of order parameters

MODELSDATA

Relativeheading

Dis

tan

ce f

ron

t-b

ack

Distance left-right

Force

Velo

city

FocalFish

Vel

ocity

NeighboringFish

Turning force

Ssp

ee

din

g f

orc

e

Katz et al. PNAS 2011

A force model of social interactions

? ? ? Inferring interaction rules: revisited

30 golden shiners

Physical properties of individuals !1. Varying tail beat frequency. 2. Strength of tail beat. 3. Dissipative force on fish. 4. Form of blind zone. 5. Geometric shape. 6. Reaction time lag. 7. Interactions: Metric, topological, visual field. 8. Stochastic behavior. 9. Fish memory.

Model assumption !1. Constant update frequency. 2. Speed limited to v_max. 3. Dissipative force set constant. 4. No blind zone. 5. Point particle. 6. Instantaneous reaction time. 7. Metric interactions. 8. Deterministic rules. 9. No memory.

Considerations

!2 !1 0 1 2

!2

!1

0

1

2

Distance !Body length"

Distance!Body

length"

!21.

0

21.Par. a !m#s2"

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 1

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 2

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 3

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 4

Force matching example: attraction/repulsion

30 fps

Observational time scale: simulations

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

20

40

60

80

100

Radius

Pairw

iseforce

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4!0.2

0.0

0.2

0.4

0.6

0.8

1.0

Radius

Pairw

iseforce

0 1 2 3 4 5!0.5

!0.4

!0.3

!0.2

!0.1

0.0

0.1

0.2

Radius

Pairw

iseforce

Original

dt = 50

dt = 30

dt = 10

dt = 1Lennard-Jones Quadratic

Morse

0.0 0.5 1.0 1.5 2.0 2.5!0.6!0.4!0.2

0.00.20.40.6

Distance !Body length"Forc

epa

ram

eter

c!unitl

ess" sector 1

0.0 0.5 1.0 1.5 2.0 2.5!0.6!0.4!0.2

0.00.20.40.6

Distance !Body length"Forc

epa

ram

eter

c!unitl

ess" sector 2

0.0 0.5 1.0 1.5 2.0 2.5!0.6!0.4!0.2

0.00.20.40.6

Distance !Body length"Forc

epa

ram

eter

c!unitl

ess" sector 3

0.0 0.5 1.0 1.5 2.0 2.5!0.6!0.4!0.2

0.00.20.40.6

Distance !Body length"Forc

epa

ram

eter

c!unitl

ess" sector 4

dt = 1dt = 10

dt = 30dt = 50

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 1

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 2

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 3

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 4

Observational time scale: experiments

Effects of tracking difficulties

Tracking accuracy per frame

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

1Statistics of individual track lengths

Length of individual track [s]

Frac

tion

of tr

acks

Individual track lengths

Tracking accuracy: Simulations

Original

dt = 50

dt = 30

dt = 10

dt = 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

20

40

60

80

100

Radius

Pairw

iseforce

0 1 2 3 4 5!0.5

!0.4

!0.3

!0.2

!0.1

0.0

0.1

0.2

Radius

Pairw

iseforce

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4!0.2

0.0

0.2

0.4

0.6

0.8

1.0

Radius

Pairw

iseforce

Lennard-Jones Quadratic

Morse

Observational time scale: simulations

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

20

40

60

80

100

Radius

Pairw

iseforce

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4!0.2

0.0

0.2

0.4

0.6

0.8

1.0

Radius

Pairw

iseforce

0 1 2 3 4 5!0.5

!0.4

!0.3

!0.2

!0.1

0.0

0.1

0.2

Radius

Pairw

iseforce

Original

dt = 50

dt = 30

dt = 10

dt = 1Lennard-Jones Quadratic

Morse

0.0 0.5 1.0 1.5 2.0 2.5!2

!1

0

1

2

Distance !Body length"Forc

epa

ram

eter

a!m#s2 " Sector 1

0.0 0.5 1.0 1.5 2.0 2.5!2

!1

0

1

2

Distance !Body length"Forc

epa

ram

eter

a!m#s2 " Sector 2

0.0 0.5 1.0 1.5 2.0 2.5!2

!1

0

1

2

Distance !Body length"Forc

epa

ram

eter

a!m#s2 " Sector 3

0.0 0.5 1.0 1.5 2.0 2.5!2

!1

0

1

2

Distance !Body length"Forc

epa

ram

eter

a!m#s2 " Sector 4

> 24 fish> 25 fish

> 26 fish> 27 fish

> 28 fish> 29 fish

Test: short interaction length (2.5 BL)

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 1

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 2

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 3

0.0 0.5 1.0 1.5 2.0 2.5!20

!10

0

10

20

Distance !Body length"Forceparametera!m#s2

" Sector 4

Force matching: three examples

Attraction/repulsion

Attraction/repulsionAlignment

Attraction/repulsionTurning

Force matching: three examples

Inspired by Daniel Strömbom

!4 !2 0 2 4

!4

!2

0

2

4

Distance !Body length"

Distance!Body

length"

!6.9

0

6.9Par. a !m#s2"

Attraction/repulsion with blind angle

Colin Twomey@CouzinLab

Interaction network: field of view

Colin Twomey@CouzinLab

Interaction network: field of view

Individual decision making

Colin Twomey@CouzinLab

Individual decision making

Colin Twomey@CouzinLab

Individual decision making

0 500 1000 1500

-300

-200

-100

0

100

200

300

0 20 40 60 80 100 1200

20

40

60

80

Scale free velocity correlations

Square root of group area [cm]

Cor

rela

tion

leng

th [c

m]

Physical properties

Thanks.

top related