collaborative project jan. 2012 – dec. 2015  · nutrition to enhance the efficiency of ruminant...

Post on 19-Oct-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Rum

inO

mic

sRuminOmics Connecting the animal genome, the intestinal microbiome and nutrition to enhance the efficiency of ruminant digestion and to mitigate the environmental impacts of ruminant livestock production 

John Wallace

Collaborative projectJan. 2012 – Dec. 2015www.ruminomics.eu

Rum

inO

mic

sMethane, ruminants and the environment

Methane as a greenhouse gas

CH4 has a global warming potential (“radiative forcing”) 28 times that of CO2

Methane contributes approximately 18% to the overall global warming effectUS Environmental Protection Agency, 2000

Fermentation

H2 + CO2

CH4

Protozoa, fungi, bacteria

Archaea

Methane production in ruminants

Protein metabolism

Protein

Peptides

Amino acids

Ammonia

Ammonia

Undegraded food protein +

Microbial protein

Food protein

Microbial protein

B

A

Urea

INEFFICIENCES

Loss of N Microbial protein breakdown

Amino acid imbalance

B

C

A

C

Rum

inO

mic

sRuminOmics Connecting the animal genome, the intestinal microbiome and nutrition to enhance the efficiency of ruminant digestion and to mitigate the environmental impacts of ruminant livestock production 

John Wallace

Collaborative projectJan. 2012 – Dec. 2015www.ruminomics.eu

Rum

inO

mic

sRuminOmics ‐ Partners

Participant no. Participant organisation name1 (Coordinator) University of Aberdeen2 Parco Tecnologico Padano3 Agrifood Research Finland4 Swedish University of Agricultural

Sciences5 University of Nottingham6 Institute of Animal Physiology &

Genetics7 Università Cattolica del Sacro

Cuore, Piacenza8 Centre National de la Recherche

Scientifique9 European Association of Animal

Production10 European Forum of Farm Animal

Breeders11 Quality Meat Scotland

1,5,11

3

2,7,9

64

8

10

http://3.bp.blogspot.com

Rum

inO

mic

sRuminOmics - Aims of project

ToolsTrainingDissemination

• Does the animal itself determine its ruminal microbiome?• If so, is this a heritable trait?• How does nutrition affect this relationship?

Emissions

Animal genetics

Ruminal microbiome

Rum

inO

mic

sRuminOmics - Response to technology

THE CALL:KBBE.2011.1.1‐03: Efficiency of ruminant digestive systems and reduction of the ecological footprint through a combination of systems biology, 'omics' and nutrition

Rum

inO

mic

sRuminOmics - Experiments

• 1000 cows in UK, Italy, Sweden, FinlandMethaneN emissions Ruminal AnimalFCE microbiome genotypeMilk quality

• 20 cows in Sweden, FinlandImpact of N, CHO, lipid nutrition

• 50 cows in UK, Italy, Sweden, FinlandFull metagenome analysis

Rum

inO

mic

sRuminOmics - Experiments II

Bovine single‐egg twins

Interspecies digesta transfer

Rum

inO

mic

sRuminOmics - Experiments III

• Fungal genomesAnaeromyces sp.Caecomyces sp.

• Bacterial genomesSix Butyrivibrio spp.Two HAP species

Rum

inO

mic

sTools, resources, legacy

Proxies Milk fatty acids

Positive Negative

iso C14:0 trans 10+11 C18:1

iso C15:0 C15:0

anteiso C17:0 C17:0+C17:1

Relationship with methane

CH4 production was positively correlated with adominance of sequences representing T-RFs related to Methanobrevibacter thaueri, Methanobrevibacter millerae, and Methanobrevibactersmithii relative to Methanobrevibacter ruminantium and Methanobrevibacter olleyae. Total numbers of methanogensand total numbers of Methanobacteriales were significantly higher with the 500/500 diet (P<0 0004 and P<0 002

Rum

inO

mic

sTools, resources, legacy

• Proxies Buccal‐ruminal‐faecal microbiomes

Rum

inO

mic

sTools, resources, legacy

• Tools Metaproteomics

Rum

inO

mic

sWork Package Structure

Rum

inO

mic

sRuminomicsPartnersRuminOmics - Aspirations

• The answer to the animal-microbe conundrum• Bioinformatics legacy• Trained & more efficient industry• Environment legacy

Rum

inO

mic

s

Rumen microbiome

Milk composition

Host genome

Methane emissions

Digestion efficiency

N efficiency

Host gene expression

The Bioinformatics challenge

Rum

inO

mic

sTools, resources, legacy

• Proxies Buccal‐ruminal‐faecal microbiomes

The rumen

The three domains of life

Ruminal microorganisms

50 m

0.5 m

100 m

Ciliate protozoa106 per g digesta

Anaerobic fungi103 per g digesta

50 m

Bacteria1010 per g digesta

Methanogenic archaea108 per g digesta

2 m

Rum

inO

mic

s

Proxies for rumen sampling – mouth (swab and bolus) and faeces: bacteria

Proxies for rumen sampling – mouth (swab and bolus) and faeces: archaea

Proxies for rumen sampling – mouth (swab and bolus) and faeces: protozoa

Conclusions on rumen digesta proxies

• Oral samples useful for bacteria and archaea

• Bolus samples needed for protozoa• Faecal samples of no predictive value

(BUT archaeol, etc.)• Oral sampling will facilitate sampling of

large cohorts without surgical intervention: breeding, inventory

RuminOmics Kevin Shingfield, Ilma Tapio, Johanna Vilkki, Pierre Taberlet, Aurelie Bonin, Tim Snelling, Graham Horgan, Daniel Fischer, Ali Bayat

Funders European CommissionBBSRC (UK Research Council)RESAS (Scottish Government)

Acknowledgements

top related