bmayer@chabotcollege.edu mth15_lec-14_sec_3-2_concavity_inflection_.pptx 1 bruce mayer, pe chabot...

Post on 26-Dec-2015

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

BMayer@ChabotCollege.edu

Chabot Mathematics

§3.2 Concavity

& Inflection

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx2

Bruce Mayer, PE Chabot College Mathematics

Review §

Any QUESTIONS About• §3.1 → Relative Extrema

Any QUESTIONS About HomeWork• §3.1 →

HW-13

3.1

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx3

Bruce Mayer, PE Chabot College Mathematics

§3.2 Learning Goals

Introduce Concavity (a.k.a. Curvature) Use the sign of the second derivative to

find intervals of concavity Locate and examine

inflection points Apply the second

derivatives test for relative extrema

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx4

Bruce Mayer, PE Chabot College Mathematics

ConCavity Described

Concavity quantifies the Slope-Value Trend (Sign & Magnitude) of a fcn when moving Left→Right on the fcn Graph

1 2 3 4-5

-4

-3

-2

-1

0

1

2

3

Position, x

m =

df/d

x

MTH15 • BLUE

1 2 3 4-5

-4

-3

-2

-1

0

1

2

3

Position, x

MTH15 • RED

m≈+

2.2

m≈0

m≈−1.4

m≈−4.4

m≈−4.4

m≈−1.4

m≈+

2.2

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx5

Bruce Mayer, PE Chabot College Mathematics

MA

TL

AB

Co

de

% Bruce Mayer, PE% MTH-15 •11Jul133% XYfcnGraph6x6BlueGreenBkGndTemplate1306.m% % The datablue =[2.2 0 -1.4 -4.4]red = [-4.4 -1.4 0 2.2]%% the 6x6 Plotaxes; set(gca,'FontSize',12);subplot(1,2,1)bar(blue, 'b'), grid, xlabel('\fontsize{14}Position, x'), ylabel('\fontsize{14}m = df/dx'),... title(['\fontsize{16}MTH15 • BLUE',]), axis([0 5 -5,3])subplot(1,2,2)bar(red, 'r'), grid, xlabel('\fontsize{14}Position, x'), axis([0 5 -5,3]),... title(['\fontsize{16}MTH15 • RED',])set(get(gco,'BaseLine'),'LineWidth',4,'LineStyle',':')

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx7

Bruce Mayer, PE Chabot College Mathematics

Example Graphical Concavity

Consider the function f given in the graph and defined on the interval (−4,4).

Approximate all intervals on which the function is INcreasing, DEcreasing, concave up, or concave down

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx8

Bruce Mayer, PE Chabot College Mathematics

Example Graphical Concavity

SOLUTION Because we have NO equation for the

function, we need to use our best judgment: • around where the

graph changes directions (increasing/decreasing)

• where the derivative of the graph changes directions (concave up or down).

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx9

Bruce Mayer, PE Chabot College Mathematics

Example Graphical Concavity

To determine where the function is INcreasing, we look for the graph to “Rise to the Right (RR)”

Rising

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx10

Bruce Mayer, PE Chabot College Mathematics

Example Graphical Concavity

Similarly, the function is DEcreasing where the graph “Falls to the Right (FR)”:

Falling

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx11

Bruce Mayer, PE Chabot College Mathematics

Example Graphical Concavity

Conclude that f is increasing on the interval (0,4) and decreasing on the interval (−4,0)

Now ExamineConcavity.

Falling to Rt Rising to Rt

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx12

Bruce Mayer, PE Chabot College Mathematics

Example Graphical Concavity

A function is concave UP wherever its derivative is INcreasing. Visually, we look for where the graph is“curved upward”, or “Bowl-Shaped”Similarly, A function is concave DOWN wherever its derivative is DEcreasing. Visually, we look for where the graph is “curved downward”, or “Dome-Shaped”

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx13

Bruce Mayer, PE Chabot College Mathematics

Example Graphical Concavity

The graph is “curved UPward” for values of x near zero, and might guess the curvature to be positive between −1 & 1

f is ConCave UP

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx14

Bruce Mayer, PE Chabot College Mathematics

Example Graphical Concavity

The graph is “curved DOWNward” for values of x on the outer edges of the domain.

f is ConCave DOWN f is ConCave DOWN

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx15

Bruce Mayer, PE Chabot College Mathematics

Example Graphical Concavity

Thus the function is concave UP approximately on the interval (−1,1) and concave DOWN on the intervals (−4, −1) & (1,4)

f is ConCave UPf is ConCave DOWN f is ConCave DOWN

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx16

Bruce Mayer, PE Chabot College Mathematics

Inflection Point Defined

A function has an inflection point at x=a if f is continuous and the CONCAVITY of f CHANGES at Pt-a

-2 -1 0 1 2 3 4 5 6 7 8 9-50

-40

-30

-20

-10

0

10

20

30

40

50

x

y =

f(x)

MTH15 • Inflection Point

ConCave DOWN

ConCave UP

InflectionPoint

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx17

Bruce Mayer, PE Chabot College Mathematics

MA

TL

AB

Co

de

% Bruce Mayer, PE% MTH-15 • 10Jul13% XYfcnGraph6x6BlueGreenBkGndTemplate1306.m%% The Limitsxmin = -2; xmax = 9; ymin =-50; ymax = 50;% The FUNCTIONx = linspace(xmin,xmax,1000); y =(x-4).^3/4 + (x+5).^2/7;yOf4 = (4-4).^3/4 + (4+5).^2/7 % % The ZERO Lineszxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax];%% the 6x6 Plotaxes; set(gca,'FontSize',12);whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Greenplot(x,y, 'LineWidth', 5),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x)'),... title(['\fontsize{16}MTH15 • Inflection Point',])hold onplot(4, yOf4, 'd r', 'MarkerSize', 9,'MarkerFaceColor', 'r', 'LineWidth', 2)plot(zxv,zyv, 'k', zxh,zyh, 'k', 'LineWidth', 2)set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:10:ymax])hold off

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx18

Bruce Mayer, PE Chabot College Mathematics

Example Inflection Graphically

The function shown above has TWO inflection points.

change from concave

down to up

change from concave

up to down

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx19

Bruce Mayer, PE Chabot College Mathematics

2nd Derivative Test

Consider a function for Which is Defined on some interval containing a critical Point (Recall that ) Then:• If , then is Concave UP at so is a

Relative MIN• If , then is Concave DOWN at so is

a Relative MAX

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx20

Bruce Mayer, PE Chabot College Mathematics

Example Apply 2nd Deriv Test

Use the 2nd Derivative Test to Find and classify all critical points for the Function

SOLUTION Find the

critical points by solving:

1

2

x

xxf

0' xfdx

df

2

2

)1(

12)1(

x

xxx

dx

df

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx21

Bruce Mayer, PE Chabot College Mathematics

Example Apply 2nd Deriv Test

By Zero-Products:

Also need to check for values of x that make the derivative undefined.• ReCall the

1st Derivative: • Thus df/dx is UNdefined for x = −1, But the

ORIGINAL function is ALSO Undefined at the this value– Thus there is NO Critical Point at x = −1

2OR020 xxxx

2

2

)1(

2

x

xx

dx

df

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx22

Bruce Mayer, PE Chabot College Mathematics

Example Apply 2nd Deriv Test

Thus the only critical points are at −2 & 0 Now use the second derivative test to

determine whether each is a MAXimum or MINimum (or if the test is InConclusive):

2

2

2

2

1

2

x

xx

dx

d

dx

yd

4

22

1

1122221

x

xxxxx

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx23

Bruce Mayer, PE Chabot College Mathematics

Example Apply 2nd Deriv Test

Before expanding the BiNomials, note that the numerator and denominator can be simplified by removing a common factor of (x+1) from all terms:

4

22

2

2

1

1122221

x

xxxxx

dx

fd

3

2

2

2

11

222211

xx

xxxxx

dx

fd

3

2

2

2

1

22221

x

xxxx

dx

fd

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx24

Bruce Mayer, PE Chabot College Mathematics

Example Apply 2nd Deriv Test

Now expand BiNomials:

Now Check Value of f’’’(0) & f’’’(−2)

3

22

2

2

1

422222

x

xxxxx

dx

fd3)1(

2

x

210

20''

212

22''

3

0

2

2

3

2

2

2

x

x

dx

fdf

dx

fdf 0

0

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx25

Bruce Mayer, PE Chabot College Mathematics

Example Apply 2nd Deriv Test

The 2nd Derivative is NEGATIVE at x = −2• Thus the orginal fcn is ConCave

DOWN at x = −2, and aRelative MAX exists at this Pt

Conversely, 2nd Derivative is POSITIVE at x = 0• Thus the orginal fcn is ConCave UP at x = 0

and a Relative MIN exists at this Pt

2

2

0

2

2

2

2

2

x

x

dx

fd

dx

fd

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx26

Bruce Mayer, PE Chabot College Mathematics

Example Apply 2nd Deriv Test

Confirm by Plot → Note the relative

MINimum at 0, relative MAXimumat −2, and a vertical asymptote where the function is undefined at x=−1 (although the vertical line is not part of the graph of the function)

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx27

Bruce Mayer, PE Chabot College Mathematics

ConCavity Sign Chart A form of the df/dx (Slope) Sign Chart

(Direction-Diagram) Analysis Can be Applied to d2f/dx2 (ConCavity)

Call the ConCavity Sign-Charts “Dome-Diagrams” for INFLECTION Analysis

a b c

−−−−−−++++++ −−−−−− ++++++

x

ConCavityForm

d2f/dx2 Sign

Critical (Break)Points Inflection NO

InflectionInflection

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx28

Bruce Mayer, PE Chabot College Mathematics

Example Dome-Diagram

Find All Inflection Points for • Notes on this (and all other) PolyNomial

Function exists for ALL x

Use the ENGR25 Computer Algebra System, MuPAD, to find • Derivatives• Critical Points

153 45 xxxfy

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx29

Bruce Mayer, PE Chabot College Mathematics

Example Dome-Diagram The Derivatives

The Critical Points

The ConCavity Values Between Break Pts• At x = −1

• At x = ½

• At x = ½

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx30

Bruce Mayer, PE Chabot College Mathematics

MyPAD Code

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx31

Bruce Mayer, PE Chabot College Mathematics

Example Dome-Diagram

Draw Dome-Diagram

The ConCavity Does NOT change at 0, but it DOES at 1• Since Inflection requires Change, the

only Inflection-Pt occurs at x = 1

0 1

−−−−−−−−−−−− ++++++

x

ConCavityForm

d2f/dx2 Sign

Critical (Break)Points NO

InflectionInflection

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx32

Bruce Mayer, PE Chabot College Mathematics

Example Dome-Diagram

TheFcnPlotShowingInflectionPoint at(1,y(1))= (1,−3)

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-15

-10

-5

0

5

10

15

x

y =

f(x)

= 3

x5 - 5

x4 - 1

MTH15 • Dome-Diagram

(1,−3)

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx33

Bruce Mayer, PE Chabot College Mathematics

MA

TL

AB

Co

de

% Bruce Mayer, PE% MTH-15 • 11Jul13% XYfcnGraph6x6BlueGreenBkGndTemplate1306.m%% The Limitsxmin = -1.5; xmax = 2.5; ymin =-15; ymax = 15;% The FUNCTIONx = linspace(xmin,xmax,1000); y =3*x.^5 - 5*x.^4 - 1;% % The ZERO Lineszxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax];%% the 6x6 Plotaxes; set(gca,'FontSize',12);whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Greenplot(x,y, 'LineWidth', 5),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x) = 3x^5 - 5x^4 - 1'),... title(['\fontsize{16}MTH15 • Dome-Diagram',])hold onplot(1,-3, 'd r', 'MarkerSize', 10,'MarkerFaceColor', 'r', 'LineWidth', 2)plot(zxv,zyv, 'k', zxh,zyh, 'k', 'LineWidth', 2)set(gca,'XTick',[xmin:0.5:xmax]); set(gca,'YTick',[ymin:5:ymax])hold off

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx34

Bruce Mayer, PE Chabot College Mathematics

Example Population Growth

A population model finds that the number of people, P, living in a city, in kPeople, t years after the beginning of 2010 will be:

Questions • In what year will the population be

decreasing most rapidly? • What will be the population at that time?

105109 23 ttttP

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx35

Bruce Mayer, PE Chabot College Mathematics

Example Population Growth

SOLUTION: “Decreasing most rapidly” is a phrase

that requires some examination. “Decreasing” suggests a negative derivative.

“Decreasing most rapidly” means a value for which the negative derivative is as negative as possible. In other words, where the derivative is a MIN

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx36

Bruce Mayer, PE Chabot College Mathematics

Example Population Growth

Need to find relative minima of functions (derivative functions are no exception) where the rate of change is equal to 0.

“Rate of change in the population derivative, set equal to zero” TRANSLATES mathematically to

0

tPdt

d

dt

d

3t

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx37

Bruce Mayer, PE Chabot College Mathematics

Example Population Growth

The only time at which the second derivative of P is equal to zero is the beginning of 2013.• Need to verify that the derivative is, in fact,

negative at that point:

10183' 2 tttPdt

dP

10)3(18)3(33' 2

3

Pdt

dP

t

171054273'3

Pdt

dP

t

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx38

Bruce Mayer, PE Chabot College Mathematics

Example Population Growth

Thus the function is decreasing most rapidly at the inflection point at the beginning of 2013:

The Model Predicts 2013 Population:

x

Peoplek 81105)3(10)3(9)3(3 23 P

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx39

Bruce Mayer, PE Chabot College Mathematics

WhiteBoard Work

Problems From §3.2• P45 → Sketch Graph using General

Description• P66 → Spreading a Rumor

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx41

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

BMayer@ChabotCollege.edu

Chabot Mathematics

Appendix

srsrsr 22

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx42

Bruce Mayer, PE Chabot College Mathematics

ConCavity Sign Chart

a b c

−−−−−−++++++ −−−−−− ++++++

x

ConCavityForm

d2f/dx2 Sign

Critical (Break)Points Inflection NO

InflectionInflection

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx43

Bruce Mayer, PE Chabot College Mathematics

Max/Min Sign Chart

a b c

−−−−−−++++++ −−−−−− ++++++

x

Slope

df/dx Sign

Critical (Break)Points Max NO

Max/MinMin

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx44

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx45

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx46

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx47

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx48

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-14_sec_3-2_Concavity_Inflection_.pptx49

Bruce Mayer, PE Chabot College Mathematics

top related