biodiesel using hetero acid catalyst

Post on 28-Aug-2014

552 Views

Category:

Technology

5 Downloads

Preview:

Click to see full reader

DESCRIPTION

Biodiesel; Hetero catalyst; transesterification

TRANSCRIPT

PRODUCTION OF BIODIESEL USING PRODUCTION OF BIODIESEL USING HETEROGENEOUS CATALYSTHETEROGENEOUS CATALYST

PHASE II – viva voicePHASE II – viva voice

NAME:K. RAMACHANDRANNAME:K. RAMACHANDRANROLL NO:2009409013ROLL NO:2009409013

M.TECH-PRPCM.TECH-PRPC

GUIDEGUIDEDr.S.RENGANATHANDr.S.RENGANATHANAssistant professorAssistant professor

ABSTRACTABSTRACT

Ba(HSO4)3 and Zn(HSO4)2 heterogeneous acid catalyst was prepared by the sulfonation of anhydrous BaCl2 and ZnCl2.

This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock.

The catalyst were characterized by SEM, EDAX and titration method.

The conversion was achieved as 88 wt% and 81.5 wt% with 60 min reaction time at methanol reflux temperature, 10:1 molar ratio of methanol to oil and 1 wt% & 1.25 wt% of catalyst respectively.

The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751.

INTRODUCTIONINTRODUCTION

Biodiesel - Alternative fuel, - reducing the level of pollutants

& carcinogen agents.Catalyst

Homogeneous Heterogeneous

Base catalyst – MgO, Ba(OH)2, Zeolites etc…

Acid catalyst

Source selection

OBJECTIVEOBJECTIVE

The proposed project work is designed to:Prepare catalystCharacterize the catalystBiodiesel production

To characterize the used mixed waste vegetable oil. Process optimization

TemperatureCatalyst volumeMethanol ratioReaction timeStirring rateCatalyst deactivation

MATERILAS & METHOD

METERIALS

Different waste vegetable oils were obtained from the various oilrefineries and local markets:

Waste Sunflower oil & palm oil -Tamilnadu Edible Oils Limited, Chennai.

Waste gingili oil, castor oil & ground nut oil - Local market in Chennai.

Zinc chloride, Barium chloride & conc. sulfuric acid - Sisco Research Laboratories Pvt Ltd (Mumbai, India).

Methanol - Merck Ltd (Mumbai, India).

METHODMETHOD

Catalyst Preparation

Scheme 1: Synthesis of Barium hydrogen sulphateBaCl2 + 2 H2SO4 Ba(HSO4)2 + 2HCl

 Scheme 2: Synthesis of Zinc hydrogen sulphate

ZnCl2 + 2 H2SO4 Zn(HSO4)2 + 2HCl

METHODMETHOD

Catalyst characterization

SEM - Structure and Pore size EDAX - Elements of the catalyst Titration method - H+ content

METHODMETHOD

Catalytic reaction procedure In this work, the mixed waste vegetable oils used as feedstock. The molar ratio of methanol to mixed oil required was calculated by treating 3 mol of FFA as 1 mol of triglyceride. The reaction was carried out in a 250 ml standard flask equipped with reflux condenser and a magnetic stirrer. The mixed oil and a known amount of catalyst were charged into the reactor. When the required temperature was reached, methanol was added into the reactor. The reaction was started by stirring (at 250 rpm). Then the transesterification were stopped when reaction was completed.

METHODMETHOD

Oil characterization  

Fatty acid content by gas chromatography analysis. Product analysis

FAME yield determined by using the H NMR technique.FAME yields can be calculated by using the following equation:

YBD = 2 * A1 / {3 * A2}*100Where, methoxylic (A1)

methylenic groups (A2)

The fuel properties such as viscosity, density, cetane number, flash point and cold filter plugging point of the methyl ester were analyzed.

RESULTS & DISCUSSIONDISCUSSION

Catalyst Characterization

SEM AnalysisBaCl2 and ZnCl2 - Loose irregular network structure.

Pores became larger - Treated with conc.H2SO4

Pore size - ↑the accessibility of H2SO4 into the Ba & Zn powder bulk, which would give a higher concentration of covalently bonded Ba or Zn with an –SO3H group.

RESULTS & DISCUSSIONDISCUSSION

Catalyst Characterization

EDAX - Ba(HSO4)2

Elements Calculated value % Measured value %

O 38.6145 38.49

S 19.3475 19.12

Ba 41.4299 41.60

RESULTS & DISCUSSIONDISCUSSION

Catalyst Characterization

EDAX - Zn(HSO4)2

Elements Calculated value % Measured value %

O 49.3140 48.79

Zn 25.2009 25.34

S 24.7084 24.51

RESULTS & DISCUSSIONDISCUSSIONOil Characterization

RESULTS & DISCUSSIONDISCUSSIONREACTION STUDIES Effect of types of alcohol:

RESULTS & DISCUSSIONDISCUSSIONREACTION STUDIES Effect of catalyst loading:

RESULTS & DISCUSSIONDISCUSSIONREACTION STUDIES Effect of temperature:

RESULTS & DISCUSSIONDISCUSSIONREACTION STUDIES Effect of oil to methanol molar ratio:

RESULTS & DISCUSSIONDISCUSSIONREACTION STUDIES Effect of reaction time:

RESULTS & DISCUSSIONDISCUSSIONREACTION STUDIES Effect of stirring speed:

RESULTS & DISCUSSIONDISCUSSIONREACTION STUDIES Deactivation of catalyst:

RESULTS & DISCUSSIONDISCUSSIONProduct analysis and specification:

NMR Result of :

Ba(HSO4)2 & Zn(HSO4)2 by considering the peak at 3.6 (due to -CH3 ester proton) and 2.3 (due to α methylene proton). The percentage conversion is equal to (2*A3.6 / 3*A2.3)*100.

RESULTS & DISCUSSIONDISCUSSIONProduct analysis and specification:

Biodiesel Specifications:

Properties Obtained Biodiesel Diesel ASTM D 6751 EN 14214

Al(HSO4)3 Zn(HSO4)2 Ba(HSO4)2

Density (Kg L-1) 0.86 0.86 0.87 0.85 0.82-0.90 0.86-0.90Kinematic viscosity (mm2 s-1)at40oC

4.2 4.1 3.4 2.6 1.9-6.0 3.5-5.0

Flash point oC 138 138 135 68 130 min 120 min

Cloud point oC 7.2 7.2 2.6 - - -

Pour point oC 6.7 6.7 2.1 - -15 to 10 -

Cetane number 52 52 55 48 47 min 51 min

Water content (wt %) 0.01 0.01 0.01 0.02 0.05 max 0.05 max

Ash content (wt %) 0.01 0.01 0.01 0.01 0.02 0.02

RESULTS & DISCUSSIONDISCUSSION

Comparison of Biodiesel Production:

Conversion

Al(HSO4)3

≈ & < Ba(HSO4)2. Zn(HSO4)2

Ba(HSO4)2 and Zn(HSO4)2 was effective acid catalyst for the production of biodiesel from mixed waste vegetable oil.

The high activity of the catalyst was described to the high acid site density and the bonded hydrophilic functional groups (-SO3H) that allowed more methanol to contact the carbonyl group of triglyceride.

The maximum conversion was achieved as 88% and 81.5%with 60 min reaction time at MeOH reflux Temp, 10:1 molar ratio of methanol to oil and 1wt% & 1.25 wt% of catalyst respectively.

The properties of obtained biodiesel are close to commercial diesel fuel. The properties of biodiesel were found to meet the biodiesel standard of ASTM D6751 and EN41214.

Conclusion

1. Kasirajan Ramachandran, Pandian Sivakumar, Tamilarasan Suganya, Sahadevan Renganathan., Production of biodiesel from mixed waste vegetable oil using an Aluminium hydrogen sulphate as a heterogeneous acid catalyst, Bioresource Technology (2011), doi: 10.1016/j.biortech.2011.04.100

PUBLICATION

Thank you

To develop the green environment

top related