ars.els-cdn.com · web viewdepartment of mechanical engineering, the hong kong polytechnic...

Post on 08-Oct-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Electronic Supporting Information

A general in-situ etching and synchronous heteroatom

doping strategy to boost the capacitive performance of

commercial carbon fibre clothTian Ouyanga, Kui Chenga, b**, Fan Yangc, Jietao Jianga, Jun Yana, Kai Zhua, Ke Yea,

Guiling Wanga, Limin Zhoub, Dianxue Caoa

a. Key Laboratory of Superlight Material and Surface Technology of Ministry of

Education, College of Material Science and Chemical Engineering, Harbin

Engineering University, Harbin, China

b. Department of Mechanical Engineering, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong SAR, China

c. College of Science, Northeast Agricultural University, Harbin 150030, China

Figure S1. Digital photo of the fresh CFC soaking-recrystallization process (a) and Corresponding author. E-mail address: chengkui@hrbeu.edu.cn (Kui Cheng), caodianxue@hrbeu.edu.cn (Dianxue Cao).

1

the CFC-750-N-S sample in different damage states (b).

Figure S2. TEM image of fresh CFC

Figure S3. TEM image of CFC-750-N-S

2

Figure S4. The SEM and TEM images of CFC-750-N (a~c), CFC-750-S (d~f), CFC-

750-F (g~i), CFC-750-N-F (j~l), and CFC-750-S-F (m~o), respectively.

3

Figure S5. The SEM image of activated CFC sample soaked in the solution

containing 0.5 g mL-1 NaNO3 and Na2S2O3.

Figure S6. The typical HAADF-STEM images with corresponding EDS element

mappings of CFC-750-N (a), CFC-750-S (b) and CFC-750-F (c).

Figure S7. XRD patterns (a), Raman patterns (b) and N2 adsorption/desorption

isotherms (c) of the resultant CFC samples.

4

Figure S8. The pore-size distribution curves of the prepared CFC samples.

Figure S9. The survey XPS spectrums of CFC-750-N (a), CFC-750-S (b) and CFC-

750-F (c).

5

Figure S10. Wetting angles of water droplet on the resultant CFC samples.

Figure S11. The XRD patterns of the as-obtained CFC-750-N and CFC-750-S before

washed with distilled water.

6

Figure S12. Electrochemical characteristics of the as-prepared CFC samples in 1 mol

L-1 H2SO4 aqueous electrolyte in a three-electrode system: CV, GCD and area

capacitances versus different current densities curves of CFC-750-N (a), CFC-750- S

(b), CFC-750-F (c), CFC-750-N-F(d) and CFC-750-S-F (e), respectively.

7

Figure S13. GCD curves of the CFC-750-N-S, CFC-750-S-F and CFC-750-N-F

recorded at 20 mA cm-2.

Figure S14. The EIS curves of the as-prepared CFC samples, the inset shows the

equivalent circuit.

8

Figure S15. Electrochemical characteristics of the as-prepared CFC samples in 6 mol

L-1 KOH aqueous electrolyte in a three-electrode system: CV, GCD and area

capacitances versus different current densities curves of CFC-750-N (a), CFC-750- S

(b), CFC-750-F (c), CFC-750-N-F(d), CFC-750-S-F(e) and CFC-750-N-S (f),

9

respectively.

Figure S16. Electrochemical characteristics of the as-prepared CFC samples in 1 mol

L-1 Na2SO4 aqueous electrolyte in a three-electrode system: CV, GCD and area

capacitances versus different current densities curves of CFC-750-N (a), CFC-750- S

(b), CFC-750-F (c), CFC-750-N-F(d), CFC-750-S-F(e) and CFC-750-N-S (f),

10

respectively.

Table S1 Surface area and pore structure characteristics of the resultant CFC samples.

Samples SBET[a]

[m2 g-1]

Vtot[b]

[cm3 g-1]

Vmic[c]

[cm3 g-1]

Vmeso

[cm3 g-1]

CFC-fresh

CFC-750

0.6

1.2

0.003

0.003

0.0003

0.0003

0.0027

0.0027

CFC-750-N 58.2 0.045 0.005 0.040

CFC-750-S

CFC-750-F

CFC-750-N-S

CFC-750-N-F

CFC-750-S-F

36.8

14.8

131.6

50.9

30.2

0.027

0.012

0.078

0.038

0.024

0.003

0.002

0.016

0.005

0.020

0.024

0.010

0.062

0.033

0.004

[a] Specific surface area based on Brunauer-Emmett-Teller equation. [b] The total pore volume was determined

from the nitrogen adsorption at a relative pressure of 0.99. [c] Specific surface area of micropores obtained from t-

plot method.

Table S2: XPS and elemental analysis of the CFC samples.

XPS Elemental analysis

C% O% N% S% F% C% N

%

S%

CFC-750 95.66 4.34 — — — 98.94 — —

CFC-750-N 88.81 8.56 2.63 — — 87.32 0.3

1

CFC-750-S 90.82 7.43 — 1.75 — 92.23 — 0.51

CFC-750-F

CFC-750-N-

S

93.17

85.78

5.15

9.12

2.72

1.84

1.68

77.27

0.3

2

0.46

Table S3. The corresponding parameter of EIS plots fitted by ZView software.

Samples Rs (Ω) Rct (Ω) CPE1-T CPE1-P W1-R W1-T W1-P

CFC-750-N 0.368 1.18 0.00053 0.951 0.952 0.1918 0.475

CFC-750-S 0.385 2.35 0.00026 0.953 0.418 0.0307 0.470

CFC-750-F 0.537 1.07 0.00016 0.958 0.613 0.0132 0.482

CFC-750-N-F 0.658 1.20 0.00013 0.951 0.676 0.0883 0.475

CFC-750-S-F 0.637 1.27 0.00033 0.984 0.246 0.0172 0.471

CFC-750-N-S 0.432 1.08 0.00056 0.937 0.397 0.1011 0.481

Table S4: Comparison of the method of modification of the carbon cloth and their

application in supercapacitors and pervious reported flexible electrode.

11

Materials Method Area Capacitance

(mF cm-2)

Electrolyte Ref

CFC direct as electrode

GOCC Gamma-Ray Irradiated 702 @1 mA cm-2 1 M H2SO4 1

EACC-10 electrochemically oxidized 756@6 mA cm-2 6M KOH 2

CC chemical oxidation 88@10 mV/s 1 M H2SO4 3

CFC-750-N-S SRC

362@0.5 mA cm-2 1 M H2SO4

This work337@0.5 mA cm-2 6 M KOH

176@0.5 mA cm-2 1 M Na2SO4

CFC as

substrate

HZM

MnO2 HNPAs

WS2

MnO2

RGO

wet chemical

electrodeposited

solvothermal

hydrothermal

electrodeposited

138.71 mA cm-2

56.05@0.5 A g-1

4.78@1 A g-1

76.14@2.5 A g-1

7@10 mV s-1

0.5 M Na2SO4

1 M Na2SO4

1 M KCl

1 M Na2SO4

1 M Na2SO4

4

5

6

7

8

CFP as

substrate

MnO2

ZnO@Au@MnO2

electrodeposited

multistep

200@0.5 A g-1

47.8@2.6 A g-1

0.5 M Na2SO4

1 M Na2SO4

9

10

1. S. Gao, L. Zhu, L. Liu, A. Gao, F. Liao and M. Shao, Electrochimica Acta, 2016, 191, 908-915.

2. W. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu, X. Lu and Y. Tong, Adv. Mater., 2015, 27, 3572-3578.

3. G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong and Y. Li, Adv. Mater., 2014, 26, 2676-2682.

4. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong and Z. L. Wang, ACS Nano, 2013, 7, 2617-2626.

5. G. Nagaraju, Y. H. Ko, S. M. Cha, S. H. Im and J. S. Yu, Nano Research, 2016, 9, 1507-1522.6. X. Shang, J.-Q. Chi, S.-S. Lu, J.-X. Gou, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, Y.-M. Chai and

C.-G. Liu, Applied Surface Science, 2017, 392, 708-714.7. N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang and M.-Q. Zhu, Advanced Energy Materials, 2016,

6, 1501458-n/a.8. X. Jiang, Y. Cao, P. Li, J. Wei, K. Wang, D. Wu and H. Zhu, Materials Letters, 2015, 140, 43-

47.

12

9. Z. Ye, T. Li, G. Ma, X. Peng and J. Zhao, Journal of Power Sources, 2017, 351, 51-57.10. Y. Zhao and P. Jiang, Colloids and Surfaces A: Physicochemical and Engineering Aspects,

2014, 444, 232-239.

13

top related