analysis of < p t > - n ch correlations in pp and pp collisions

Post on 14-Jan-2016

22 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Analysis of < p T > - N ch Correlations in pp and pp Collisions. Denis Derkach Saint-Petersburg State University, Russia. Erice, Italy, 05.09.2006 International Subnuclear Physics School. Outline. motivation; effective pomeron exchange model; -N ch correlation description; - PowerPoint PPT Presentation

TRANSCRIPT

Analysis of <pT>-Nch Correlations in pp and pp CollisionsDenis DerkachSaint-Petersburg State University, Russia

Erice, Italy, 05.09.2006

International Subnuclear Physics School

D. Derkach, ISSP'06, Erice 205 Sep 2006

Outline

• motivation; • effective pomeron exchange model;• <pt>-Nch correlation description;

• experimental data description;• prospects for ALICE/CERN.

D. Derkach, ISSP'06, Erice 305 Sep 2006

pp Collisions

D. Derkach, ISSP'06, Erice 405 Sep 2006

Experimentally Observed pt-Nch Correlations

0 10 20 30 40 50 60 70 80 900,28

0,30

0,32

0,34

0,36

0,38

0,40

0,42

0,44

0,46

0,48

0,50

0,52

0,54

0,56

0,58

NA5 19 GeV |y|<1.5

SppS 540 GeV |y|<2.5

UA1 900 GeV |eta|<2.5

N_ch

<p_

t>N

ch

, GeV

/c

SPS 31 GeV |y|<2

UA1 200 GeV |eta|<2.5

SPS 63 GeV |y|<2

D. Derkach, ISSP'06, Erice 505 Sep 2006

Experimentally Observed pt-Nch Correlations. Features• <pt>Nch does not grow with energy at low Nch.

• <pt>Nch flattens at high Nch.

• Experiments can be divided into two groups depending on the value of <pt> at Nch close to 0.

D. Derkach, ISSP'06, Erice 605 Sep 2006

Experimentally Observed pt-Nch Correlations. Literature• NA49 collab. arXiv:hep-ex/0311009.• A. Breakstone et al. (ABCDHW Collaboration),

Phys. Lett. 132B (1983) 463.• UA1 collab., Nucl Phys 335B (1990) 261.• F.Abe et.al, Phys.Rev.Lett. 61 (1988) 1819.• C.De Marzo et al. Phys. Rev. 29D (1984) 363.• V.V. Aivazyan et al., Phys.Lett. 209B (1988) 103.• T. Alexopoulos et al., Phys. Lett. 336B (1994) 599.

D. Derkach, ISSP'06, Erice 705 Sep 2006

Classical Multi-Pomeron Exchange Model

Pomeron is a virtual particle that is exchanged during the inelastic scatering process with vacuum quantum numbers flow.

It can be considered as a pair of strings.

The number of pomerons exchanged rises with energy.

Collective effects are not included in the model.

A. B. Kaidalov and K. A. Ter-Martirosyan, Phys. Lett. B 117 (1982) 247

D. Derkach, ISSP'06, Erice 805 Sep 2006

String Formation

A.Capella, U.P.Sukhatme, C.-I.Tan and J.Tran Thanh Van, Phys. Rep.236(1994)225

D. Derkach, ISSP'06, Erice 905 Sep 2006

Dual Parton Model calculations

In this model an additional assumption was made: a transverse momentum of sea quarks was introduced as a parameter.

This parameter was fitted to be 1.1 GeV.

P. Aurenche, F. W. Bopp and J. Ranft,

Phys. Lett. 147B, (1984) 212

D. Derkach, ISSP'06, Erice 1005 Sep 2006

String Formation

Collective effects are observed.

Possible solution – string interactions. M. A. Braun and C. Pajares, Phys. Lett. B 287 (1992) 154; Nucl. Phys. B 390 (1993) 542, 549

D. Derkach, ISSP'06, Erice 1105 Sep 2006

Classical Multi-Pomeron Exchange Model

n

tchnT

pgNnPwpd

dN)(),(

2

normalized cross section of simultaneous production of

n-pomeron showersnw

),( chNnPprobability for strings to give particles after

hadronization

n2 chN

)( tpgtransverse momentum distribution for particles coming from a single string

A. B. Kaidalov, K. A. Ter-Martirosyan Phys. Lett. 11B (1982) 247

D. Derkach, ISSP'06, Erice 1205 Sep 2006

Classical Multi-Pomeron Exchange Model

n

t

ch

Nynk

n

l

lzp

t t

mp

N

ynke

l

ze

nzpd

tkdN ch

))(

exp(!

)2()

!1(

),,( 222

1

02

n

tchnT

pgNnPwpd

dN)(),(

2

No correlations can be obtained from this distribution!

D. Derkach, ISSP'06, Erice 1305 Sep 2006

n

t

ch

Nynk

n

l

lzp

t tn

mp

N

ynke

l

ze

nzpd

tkdN ch

))(

exp(!

)2()

!1(

),,( 222

1

02

Modifications. Basic formula

- parameter that accounts effectively collectivity

n

t

ch

Nynk

n

l

lzp

t t

mp

N

ynke

l

ze

nzpd

tkdN ch

))(

exp(!

)2()

!1(

),,( 222

1

02

= =

D. Derkach, ISSP'06, Erice 1405 Sep 2006

Parameters

t – average string tension

k – mean number of particles produced per unit rapidity by one string

- efficient string collective coefficient

Classical model parameters:

Modificated model parameter:

D. Derkach, ISSP'06, Erice 1505 Sep 2006

Fitting

0 20 40 60 80 100

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

Nch

<p t>

Nch

, GeV

/c

900 GeV pp collisionsFitting was done for 11 different datasets.

Energy range covered is 17-1800 GeV.

The parameter values were extracted.

D. Derkach, ISSP'06, Erice 1605 Sep 2006

Fitting

Fitting was done for 11 different datasets.

Energy range covered is 17-1800 GeV.

The parameter values were extracted.

0 5 10 15 20 25 30

0,38

0,40

0,4263 GeV pp collisions

Nch

<p t>

Nch

, GeV

/c

D. Derkach, ISSP'06, Erice 1705 Sep 2006

Fit results

10 100 1000

-0,5

0,0

0,5

b

CM energy, GeV10 100 1000

0,00,20,40,60,81,01,21,41,61,82,0

k

CM Energy

D. Derkach, ISSP'06, Erice 1805 Sep 2006

Fit results

10 100 10000,0

0,1

0,2

0,3

0,4

0,5

0,6t,

Gev

2

CM Energy, GeV

D. Derkach, ISSP'06, Erice 1905 Sep 2006

<pt> vs. CM Energy

100 10000,000,050,100,150,200,250,300,350,400,450,50

FNAL (E735) SPS ISR FNAL(CDF) ISR(NA5)

Our Calculations for t=0.57 GeV2

Our Calculations for t=0.4 GeV2<P

T>, G

eV/c

CM Energy, GeV

D. Derkach, ISSP'06, Erice 2005 Sep 2006

Mean number of pomerons

100 1000 100000,51,01,52,02,53,03,54,04,55,05,5

Num

ber of

pom

eron

s

Energy, GeV

D. Derkach, ISSP'06, Erice 2105 Sep 2006

Dispersion in number of pomerons

100 1000 100000,0

0,5

1,0

1,5

2,0

2,5N

orm

aliz

ed d

ispe

rsio

n

Energy, GeV

D. Derkach, ISSP'06, Erice 2205 Sep 2006

LHC predictions from EPEM

0 20 40 60 80 1000,30

0,35

0,40

0,450,50

0,55

0,60

0,65

0,70

0,75

t=0.43

t=0.57

LHC predictions, | |<0.9, sqrt(s) = 14 TeV

<p t>

, GeV

/c

Nch

The predictions are made for both parameter t values. The plot should be chosen after specification of experimental data.

D. Derkach, ISSP'06, Erice 2305 Sep 2006

Conclusions

• Experirmental results on mean pt and on pt-n correlation are summarized in a wide energy range.

• Negative and positive correlations are reproduced in one approach of modified multi-Pomeron exchange model.

• Smooth behavior of parameter “ ” with energy is observed.• Logarithmic growth of number of Pomerons and their dispersions

with energy in the region 17 GeV – 1.8 TeV are related to observed experimental correlations.

• First results on pp collisions in ALICE at the LHC at 5.5 TeV on the pt-Nch corelation at midrapidity should clarify the functional dependence of “ ”.

top related