amand faessler, tuebingen double beta decay and neutrino masses amand faessler tuebingen 1. solution...

Post on 18-Dec-2015

226 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Amand Faessler, Tuebingen

Double Beta Decayand

Neutrino Masses

Amand FaesslerTuebingen

1. Solution of the Solar Neutrino Problem by SNO.

2. Neutrino Masses and the Neutrinoless Double

Beta Decay: Dirac versus Majorana Neutrinos

3. Neutrino Masses and Supersymmetry

Amand Faessler, Tuebingen

(1) Solar Neutrino Problem

Reaction Network:

Oscillations:Fewer νe on Earth detected

than produced in the Sun.

Oscillations depend on:

Amand Faessler, Tuebingen

Sudburry Neutrino Observatory

Creighton Mine Ontario / Canada(Zink Mine)

Amand Faessler, Tuebingen

THE SNO CHERENKOV DETECTOR WITH HEAVY WATER

9456 Photomultipliers Ø 20 cm 55 % of 4π

Cherenkow radiation of e-

Trigger ≥ 23 PMT

Eν (Threshold) = 6.75 MeV

Ø 17 m; view from below

Amand Faessler, Tuebingen

Cherenkov - Detectors:

(ES) Elastic Neutrino Scattering:

e- forward scatteringS-KAMIOKANDE + SNO

e- (fast)

νe

W+

νe

e- (fast)

e- e-

νx

νx

Z0+

6 : 1:1:1

Amand Faessler, Tuebingen

Charged Current (CC):

e- backwardSNO

e-

νe

W+

P

P

Deuteron

(p + n)

Amand Faessler, Tuebingen

(NC) Neutral Current:

n-capture in salt NaCl (n, γ)

νx

νx

Z0

P n

Deuteron SNO

Amand Faessler, Tuebingen

Assuming only Electron Neutrinos:(ES) 2.35*106 [Φ](CC) 1.76*106 [Φ](NC) 5.09*106 [Φ]

Including Muon and Tauon ν:

Φ(νe) = 1.76*106 (CC)

Φ(νμ+ντ) = 3.41*106 (CC+ES)

Φ(νe+νμ+ντ) = 5.09*106 (NC)

Φ(ν-Bahcall) = 5.14*106

Amand Faessler, Tuebingen

ν1, ν2, ν3 Mass States

νe, νμ, ντ Flavor States

Theta(1,2) = 32.6 degrees Solar + KamLandTheta(1,3) < 13 degrees ChoozTheta(2,3) = 45 degrees S-Kamiokande

Amand Faessler, Tuebingen

(Bild)

Amand Faessler, Tuebingen

(2) Neutrinoless Double Beta Decay

The Double Beta Decay:

0+

0+

0+

β-

1+

2-

β-

e- e-

E>2me

Amand Faessler, Tuebingen

2νββ-Decay (in SM allowed)

Thesis Maria Goeppert-Mayer1935 Goettingen

P P

n n

Amand Faessler, Tuebingen

Oνββ-Decay (forbidden)

only for Majorana Neutrinos ν = νc

P

P

n n

Left

Leftν

Phase Space

106 x 2νββ

Amand Faessler, Tuebingen

GRAND UNIFICATION

Left-right Symmetric Models SO(10)

Majorana Mass:

Amand Faessler, Tuebingen

P P

νν

n n

e-

e-

L/R l/r

Amand Faessler, Tuebingen

l/r

P

ν

P

l/r

n n

light ν

heavy N

Neutrinos

Amand Faessler, Tuebingen

Theoretical Description:

Simkovic, Rodin, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Gutsche, Bilenky, Vogel et al.

0+

0+

0+

1+

2-

k

k

ke1

e2PP

ν Ek

Ein n

0νββ

Amand Faessler, Tuebingen

Amand Faessler, Tuebingen

Supersymmetry

Bosons ↔ Fermions--------------------------------------------------------------------

---

Neutralinos

P P

e- e-

n n

u

u u

ud d

Proton Proton

Neutron Neutron

Amand Faessler, Tuebingen

Majorana;

Amand Faessler, Tuebingen

The best choice:

Quasi-Particle-

(a) Quasi-Boson-Approx.:

(b) Particle Number non-conserv.(important near closed shells)

(c) Unharmonicities(d) Proton-Neutron Pairing

Pairing

Amand Faessler, Tuebingen

Amand Faessler, Tuebingen

Nucleus 48Ca 76Ge 82Se 96Zr 100Mo 116Cd 128Te 130Te 134Xe 136Xe

150Nd

T1/2 (exp)[years]

>9.51021

>1.91025

>1.41022

>1.01021

>5.51022

>7.01022

>8.61022

>1.41022

>5.81022

>7.01023

>1.71021

Ref.: You Klap-dor

Elli-ott

Arn. Ejiri Dane-vich

Ales.

Ales. Ber. Staudt

Klimenk.

<m>[eV] <22.

<0.47

<8.7

<40.

<2.8 <3.8 <17.

<3.2 <27. <3.8

<7.2

η~m(p)/M(

<200.

<0.79

<15.

<79.

<6.0 <7.0 <27.

<4.9 <38. <3.5

<13.

λ‘(111)[10-4] <8.9

<1.1 <5.0

<9.4

<2.8 <3.4 <5.8

<2.4 <6.8 <2.1

<3.8

Only for Majorana ν possible.

Amand Faessler, Tuebingen

gPP fixed to 2νββ

Each point: (3 basis sets) x (3 forces) = 9 values

Amand Faessler, Tuebingen

Amand Faessler, Tuebingen

Amand Faessler, Tuebingen

Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass

of planed Experiments

from R-QRPA; m) = )

Amand Faessler, Tuebingen

Neutrino-Masses for the Double 0νβ-Decay and Neutrino Oscillations

Solar NeutrinosAtmospheric νReactor ν (Chooz; KamLand)

with CP-Invariance:

Amand Faessler, Tuebingen

Solar Neutrinos (+KamLand):

(KamLand)

Atmospheric Neutrinos: (Super-Kamiok.)

Amand Faessler, Tuebingen

Reactor Neutrinos (Chooz):

CP

Amand Faessler, Tuebingen

OSCILLATIONS AND DOUBLE BETA DECAY

Hierarchies: mν

Normal

m3

m2

m1

m1<<m2<<m3

Inverted m2

m1

m3

m3<<m1<<m2

Bilenky, Faessler, Simkovic P. R. D 70(2004)33003

Amand Faessler, Tuebingen

Normal:

Inverted:

Amand Faessler, Tuebingen

(Bild)

Amand Faessler, Tuebingen

Amand Faessler, Tuebingen

Amand Faessler, Tuebingen

Summary:Neutrinos Oscillations, Neutrino

Masses andthe Double beta Decay

1. Solution of the Solar Neutrino Problem by theSudburry-Neutrino-Observatory (SNO):

Elastic Scattering (S-KAMIOKANDE):

Heavy Water (SNO: Charged Currents):

νx

νx

Z0

e-

e-

e-

e-νc

νc

W+

νc

d d

e-

W+

P P

Pn

n

n

P

P

νx

νx

Z0

Amand Faessler, Tuebingen

2. Neutrinoless Double Beta Decay

Dirac versus Majorana NeutrinosGrand Unified Theories (GUT‘s),R-Parity violating Supersymmetry →Majorana-Neutrinos = Antineutrinos

Direct measurement in the Tritium Beta Decay in Mainz

and Troisk

n n

nn

PP

P P

ddd

d

u u

u

u u

u

Amand Faessler, Tuebingen

3. Neutrino Masses and Supersymmetry

R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D )

m(neutrino1) = ~0 – 0.02 [eV] m(neutrino2) = 0.002 – 0.04 [eV] m(neutrino3) = 0.03 – 1.03 [eV]

0-Neutrino Double Beta decay <mββ> = 0.009 - 0.045 [eV]

ββ Experiment: <mββ> < 0.47 [eV]

Klapdor et al.: <mββ> = 0.1 – 0.9 [eV]

Tritium (Otten, Weinheimer, Lobashow) <m> < 2.2 [eV]

THE END

Amand Faessler, Tuebingen

ν-Mass-Matrix by Mixing with:

Diagrams on the Tree level:

Majorana Neutrinos:

Amand Faessler, Tuebingen

Loop Diagrams:

Figure 0.1: quark-squark 1-loop contribution to mv

X

X

Majorana

Neutrino

Amand Faessler, Tuebingen

Figure 0.2: lepton-slepton 1-loop contribution to mv

(7x7) Mass-Matrix:

X

X

Block

Diagonalis.

Amand Faessler, Tuebingen

7 x 7 Neutrino-Massmatrix:

Basis: Eliminate Neutralinos in 2. Order:

separabel

{ Mass Eigenstate

Vector in

flavor space

for 2 independent

and possible

Amand Faessler, Tuebingen

Super-K:

Amand Faessler, Tuebingen

Horizontal U(1) Symmetry

U(1) FieldU(1) chargeR-Parity breaking terms must be without U(1) charge change (U(1) charge

conservat.)Symmetry Breaking:

Amand Faessler, Tuebingen

How to calculate λ‘i33 (and λi33) from λ‘333?

U(1) charge conserved!

1,2,3 = families

top related