advanced structural materials for concrete...

Post on 11-Aug-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Advanced Structural Materials for Concrete Bridges

Tuesday, December 3, 20191:00-2:30 PM ET

TRANSPORTATION RESEARCH BOARD

The Transportation Research Board has met the standards and

requirements of the Registered Continuing Education Providers Program.

Credit earned on completion of this program will be reported to RCEP. A

certificate of completion will be issued to participants that have registered

and attended the entire session. As such, it does not include content that

may be deemed or construed to be an approval or endorsement by RCEP.

Purpose

To identify and compare several advanced performance structural materials that may be used on bridges.

Learning Objectives

At the end of this webinar, you will be able to:

โ€ข List four new advanced structural materials for concrete bridge applications

โ€ข Describe the benefits of each advanced structural material

โ€ข Describe the challenges of implementing these structural materials

PDH Certificate Informationโ€ข This webinar is valued at 1.5 Professional Development

Hours (PDH)โ€ข Instructions on retrieving your certificate will be found in

your webinar reminder and follow-up emailsโ€ข You must register and attend as an individual to receive a

PDH certificateโ€ข Certificates of Completion will be issued only to individuals

who register for and attend the entire webinar session โ€“this includes Q&A

โ€ข TRB will report your hours within one weekโ€ข Questions? Contact Reggie Gillum at RGillum@nas.edu

Michigan Department of TransportationFRP prestressing codes and guidance

Matthew J. Chynoweth, P.E.Chief Bridge EngineerDirector, Bureau of Bridges and Structures

2

Introduction of current needs in bridge durability & Advanced Structural Materials of interest

โ€ข Material Systems:โ€ข Prestressed Concrete using either CFRP & HSSS โ€ข Reinforced Concrete using FRP rebar (Glass & Basalt FRP)โ€ข Ultra-High Performance Concrete (UHPC)

โ€ข without reinforcing;โ€ข with traditional reinforcing and/or prestressing (carbon-steel)โ€ข with ASM reinforcing and/or prestressing (HSSS or FRP)

โ€ข Justification of higher initial cost from ASMโ€™sโ€ข Durability Enhancement โ€“ potentially increased Service Life / significantly reduced Thru-life

Maintenance Repair & Rehabilitation (MRR);โ€ข Resilience โ€“ superior Mechanical Performance, Damage Tolerance for continued service,

increased Adaptability options (long-term widening, structure repurposing);โ€ข Sustainability โ€“ Reduced embodied energy, CO2 emissions using circular economy principals;โ€ข Life-Cycle Cost Analysis (LCC) - economic comparisons;โ€ข Life Cycle Analysis (LCA) - environmental comparisons

A recent TRB webinar covered the National AASHTO LRFD Guide Specifications:

TRB Webinar: Carbon Fiber-Reinforced Polymer Systems for Concrete Structures

http://www.trb.org/BridgesOtherStructures/Blurbs/179731.aspx

COLLEGE OF ENGINEERING

4

Stages of prestressing force

๐‘ƒ๐‘ƒ๐‘—๐‘—: Initial jacking force

๐‘ƒ๐‘ƒ๐‘๐‘๐‘๐‘๐‘๐‘: Prestressing force immediately before transfer

๐‘ƒ๐‘ƒ๐‘๐‘๐‘๐‘๐‘๐‘ = ๐‘ƒ๐‘ƒ๐‘—๐‘—

COLLEGE OF ENGINEERING

5

๐‘ƒ๐‘ƒ๐‘–๐‘–: Prestressing force immediately after transfer

๐‘ƒ๐‘ƒ๐‘–๐‘– = ๐‘ƒ๐‘ƒ๐‘๐‘๐‘๐‘๐‘๐‘ ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ ๐ธ๐ธ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐ธ๐ธ๐‘ ๐‘ ๐‘ ๐‘ ๐ธ๐ธ๐‘ ๐‘ ๐‘ ๐‘  ๐ธ๐ธ๐‘ ๐‘ ๐ธ๐ธ๐ธ๐ธ๐‘ ๐‘ ๐ธ๐ธ, ๐‘“๐‘“๐‘๐‘๐‘๐‘๐‘๐‘

COLLEGE OF ENGINEERING

6

๐‘“๐‘“๐‘๐‘๐‘๐‘๐‘๐‘(๐‘˜๐‘˜๐ธ๐ธ๐ธ๐ธ) = 10.0๐‘“๐‘“๐‘๐‘๐‘๐‘๐‘๐‘๐ด๐ด๐‘๐‘๐‘๐‘๐ด๐ด๐‘”๐‘”

๐›พ๐›พโ„Ž๐›พ๐›พ๐‘ ๐‘ ๐‘๐‘ + 12.0๐›พ๐›พโ„Ž๐›พ๐›พ๐‘ ๐‘ ๐‘๐‘ + ๐‘“๐‘“๐‘๐‘๐‘๐‘

๐›พ๐›พโ„Ž = 1.7 0.01H

๐›พ๐›พ๐‘ ๐‘ ๐‘๐‘ =5

(1 + ๐‘“๐‘“๐‘๐‘๐‘–๐‘–โ€ฒ )

๐‘ƒ๐‘ƒ๐‘’๐‘’: Effective prestressing force after long-term losses

๐‘ƒ๐‘ƒ๐‘’๐‘’ = ๐‘ƒ๐‘ƒ๐‘–๐‘– { ๐ถ๐ถ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐ถ๐ถ + ๐ธ๐ธ๐‘ ๐‘ ๐‘ ๐ธ๐ธ๐‘ ๐‘ ๐‘˜๐‘˜๐ธ๐ธ๐‘ ๐‘ ๐‘ ๐‘  + ๐‘ ๐‘ ๐‘ ๐‘ ๐ธ๐ธ๐ธ๐ธ๐‘Ÿ๐‘Ÿ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ๐‘ ๐‘ ๐‘ ๐‘  ๐ธ๐ธ๐‘ ๐‘ ๐ธ๐ธ๐ธ๐ธ, ๐‘“๐‘“๐‘๐‘๐‘๐‘๐‘๐‘} ๐‘“๐‘“๐‘๐‘๐‘๐‘๐‘๐‘

H: Humidity = 70

๐‘“๐‘“๐‘๐‘๐‘๐‘๐‘๐‘: stress in FRP immediately prior to transfer

๐‘“๐‘“๐‘๐‘๐‘๐‘

๐‘“๐‘“๐‘๐‘๐‘๐‘๐‘๐‘

COLLEGE OF ENGINEERING

7

Check stresses @ service limit state

Prestressing force (๐‘ƒ๐‘ƒ๐‘’๐‘’)

Self-weight of the beam (or non-composite section) + Dead load + superimposed dead loads + Live loads

Concrete full strength (๐‘“๐‘“๐‘๐‘โ€ฒ)

๐œŽ๐œŽ๐‘๐‘๐‘๐‘๐‘๐‘ = โˆ’๐‘ƒ๐‘ƒ๐‘’๐‘’๐ด๐ด๐‘›๐‘›๐‘›๐‘›

๐‘ƒ๐‘ƒ๐‘’๐‘’.๐‘’๐‘’๐ผ๐ผ๐‘›๐‘›๐‘›๐‘›

๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘€๐‘€๐‘›๐‘›๐‘›๐‘›๐ผ๐ผ๐‘›๐‘›๐‘›๐‘›

๐‘ฆ๐‘ฆ๐‘๐‘ + ๐‘€๐‘€๐ท๐ท๐‘›๐‘›๐ผ๐ผ๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘๐‘ + 0.8 ๐‘€๐‘€๐ฟ๐ฟ๐ฟ๐ฟ

๐ผ๐ผ๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘๐‘ (Service III)

๐œŽ๐œŽ๐‘๐‘๐‘๐‘๐‘๐‘ = โˆ’๐‘ƒ๐‘ƒ๐‘’๐‘’๐ด๐ด๐‘›๐‘›๐‘›๐‘›

+ ๐‘ƒ๐‘ƒ๐‘’๐‘’.๐‘’๐‘’๐ผ๐ผ๐‘›๐‘›๐‘›๐‘›

๐‘ฆ๐‘ฆ๐‘๐‘๐‘€๐‘€๐‘›๐‘›๐‘›๐‘›๐ผ๐ผ๐‘›๐‘›๐‘›๐‘›

๐‘ฆ๐‘ฆ๐‘๐‘๐‘€๐‘€๐ท๐ท๐‘›๐‘›๐ผ๐ผ๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘๐‘

๐‘€๐‘€๐ฟ๐ฟ๐ฟ๐ฟ๐ผ๐ผ๐‘›๐‘›๐‘ฆ๐‘ฆ๐‘๐‘ (Service I) ๐‘ ๐‘ ๐ธ๐ธ

๐ธ๐ธ

Critical section@ mid-span

COLLEGE OF ENGINEERING

8

MDOT guide:

No tension is allowed in pre-compressed

tensile zone of CFRP prestressed beams

COLLEGE OF ENGINEERING

9

COLLEGE OF ENGINEERING

10

Most common Less common

COLLEGE OF ENGINEERING

11

๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ =๐ด๐ด๐‘๐‘๐‘’๐‘’๐‘๐‘.๐‘‘๐‘‘1

Reinforcementratio Depth of stress block Section design Failure mode

๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ < ๐œŒ๐œŒ๐‘๐‘_๐‘๐‘๐‘๐‘๐‘๐‘ ๐›ฝ๐›ฝ1 ๐ธ๐ธ < ๐‘‘๐‘‘ Rectangular Tension๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ > ๐œŒ๐œŒ๐‘๐‘_๐‘๐‘๐‘๐‘๐‘๐‘ ๐›ฝ๐›ฝ1 ๐ธ๐ธ < ๐‘‘๐‘‘ Rectangular Compression๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ < ๐œŒ๐œŒ๐‘๐‘_๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘‘๐‘‘ < ๐›ฝ๐›ฝ1 ๐ธ๐ธ < ๐‘‘๐‘‘ + ๐‘๐‘ Flanged Tension๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ > ๐œŒ๐œŒ๐‘๐‘_๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘‘๐‘‘ < ๐›ฝ๐›ฝ1 ๐ธ๐ธ < ๐‘‘๐‘‘ + ๐‘๐‘ Flanged Compression

๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ < ๐œŒ๐œŒ๐‘๐‘_๐‘๐‘๐‘๐‘๐‘๐‘ ๐›ฝ๐›ฝ1 ๐ธ๐ธ > ๐‘‘๐‘‘ + ๐‘๐‘Double Flanged Tension

๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ > ๐œŒ๐œŒ๐‘๐‘_๐‘๐‘๐‘๐‘๐‘๐‘ ๐›ฝ๐›ฝ1 ๐ธ๐ธ > ๐‘‘๐‘‘ + ๐‘๐‘Double Flanged Compression

๐‘‘๐‘‘: Depth of deck slab ๐‘๐‘: Depth of top flange of beam

COLLEGE OF ENGINEERING

12

b

bw

hf

d1

c

d1-c

๐œ€๐œ€1๐œ€๐œ€2

๐œ€๐œ€3๐œ€๐œ€4

๐œ€๐œ€๐‘–๐‘–

๐œ€๐œ€๐‘๐‘

di-c

๐œ€๐œ€๐‘–๐‘– = ๐œ€๐œ€1๐‘‘๐‘‘๐‘–๐‘– ๐ธ๐ธ๐‘‘๐‘‘1 ๐ธ๐ธ

๐œ€๐œ€๐‘–๐‘– = Strain in CFRP reinforcement at layer ๐ธ๐ธ, not including the effective prestressing strain ๐œ€๐œ€๐‘๐‘๐‘’๐‘’

N.A.

Strain Distribution

COLLEGE OF ENGINEERING

13

b

bw

hf

d1

c

d1-c

๐‘‡๐‘‡1๐‘‡๐‘‡2

๐‘‡๐‘‡3๐‘‡๐‘‡4

๐‘ƒ๐‘ƒ๐‘๐‘๐‘๐‘๐‘’๐‘’๐‘ ๐‘ ๐‘๐‘๐‘๐‘๐‘’๐‘’๐‘ ๐‘ ๐‘ ๐‘ 

๐œ€๐œ€๐‘๐‘

di-c

๐‘‡๐‘‡๐‘–๐‘– = ๐œ€๐œ€๐‘–๐‘– .๐‘ ๐‘ ๐‘–๐‘– .๐ธ๐ธ๐‘๐‘.๐ธ๐ธ๐‘๐‘

๐‘‡๐‘‡๐‘–๐‘– = Force in CFRP reinforcement at layer ๐ธ๐ธ, not including the effective prestressing force ๐‘ƒ๐‘ƒ๐‘’๐‘’

N.A.

Forces in section

๐‘‡๐‘‡๐‘–๐‘–

๐น๐น๐‘๐‘

COLLEGE OF ENGINEERING

14

๐ด๐ด๐‘๐‘๐‘’๐‘’ = ๏ฟฝ๐‘–๐‘–=1

๐‘–๐‘–=๐‘š๐‘š

๐ด๐ด๐‘–๐‘–_๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ =๐ด๐ด๐‘๐‘๐‘’๐‘’๐‘๐‘.๐‘‘๐‘‘1

Calculate the neutral axis depth for a balanced section, ๐ธ๐ธ๐‘๐‘๐‘๐‘๐‘๐‘๐ธ๐ธ๐‘๐‘๐‘๐‘๐‘๐‘๐‘‘๐‘‘1

=๐œ€๐œ€๐‘๐‘๐‘๐‘

๐œ€๐œ€๐‘๐‘๐‘๐‘ + (๐œ€๐œ€๐‘”๐‘”๐‘๐‘ ๐œ€๐œ€๐‘๐‘๐‘’๐‘’)

(rectangular sections)

๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ < ๐œŒ๐œŒ๐‘๐‘๐‘๐‘๐‘๐‘๐œŒ๐œŒ๐‘๐‘๐‘’๐‘’ > ๐œŒ๐œŒ๐‘๐‘๐‘๐‘๐‘๐‘

Tension failure

Compression failure

๐œŒ๐œŒ๐‘๐‘๐‘๐‘๐‘๐‘ =0.85๐‘“๐‘“๐‘๐‘โ€ฒ๐›ฝ๐›ฝ1๐ธ๐ธ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ค๐‘ค + 0.85๐‘“๐‘“๐‘๐‘โ€ฒ ๐‘๐‘ ๐‘๐‘ ๐‘๐‘๐‘ค๐‘ค ๐‘ƒ๐‘ƒ๐‘’๐‘’

๐ธ๐ธ๐‘๐‘ ๐œ€๐œ€๐‘”๐‘”๐‘๐‘ ๐œ€๐œ€๐‘๐‘๐‘’๐‘’ ๐‘๐‘๐‘‘๐‘‘1(Flanged sections)

๐œŒ๐œŒ๐‘๐‘๐‘๐‘๐‘๐‘ =0.85๐‘“๐‘“๐‘๐‘โ€ฒ๐›ฝ๐›ฝ1๐ธ๐ธ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘ƒ๐‘ƒ๐‘’๐‘’๐ธ๐ธ๐‘๐‘ ๐œ€๐œ€๐‘”๐‘”๐‘๐‘ ๐œ€๐œ€๐‘๐‘๐‘’๐‘’ ๐‘๐‘๐‘‘๐‘‘1

COLLEGE OF ENGINEERING

15

Calculate the depth of the N.A., ๐ธ๐ธ

Calculate the flexural strain in different reinforcement layers & strain in concrete

๐œ€๐œ€๐‘–๐‘– = ๐œ€๐œ€1๐‘‘๐‘‘๐‘–๐‘– ๐ธ๐ธ๐‘‘๐‘‘1 ๐ธ๐ธ

๐œ€๐œ€๐‘๐‘ = ๐œ€๐œ€1๐‘๐‘

๐‘‘๐‘‘1โˆ’๐‘๐‘< ๐œ–๐œ–๐‘๐‘๐‘๐‘

Where, ๐œ€๐œ€1 = ๐œ€๐œ€๐‘”๐‘”๐‘๐‘ ๐œ€๐œ€๐‘๐‘๐‘’๐‘’

๐ธ๐ธ =๐ธ๐ธ๐‘๐‘ .๐ด๐ด๐‘๐‘๐‘’๐‘’ . (๐œ€๐œ€๐‘”๐‘”๐‘๐‘ ๐œ€๐œ€๐‘๐‘๐‘’๐‘’) + ๐‘ƒ๐‘ƒ๐‘’๐‘’

0.85 ๐‘“๐‘“๐‘๐‘โ€ฒ ๐›ฝ๐›ฝ1 ๐‘๐‘

For a rectangular section

๐ธ๐ธ =๐ธ๐ธ๐‘๐‘ .๐ด๐ด๐‘๐‘๐‘’๐‘’ . (๐œ€๐œ€๐‘”๐‘”๐‘๐‘ ๐œ€๐œ€๐‘๐‘๐‘’๐‘’) + ๐‘ƒ๐‘ƒ๐‘’๐‘’ 0.85๐‘“๐‘“๐‘๐‘โ€ฒ ๐‘๐‘ ๐‘๐‘ ๐‘๐‘๐‘ค๐‘ค

0.85 ๐‘“๐‘“๐‘๐‘โ€ฒ ๐›ฝ๐›ฝ1 ๐‘๐‘๐‘ค๐‘ค

For a flanged section

COLLEGE OF ENGINEERING

16

Calculate the nominal moment capacity of the section, ๐‘€๐‘€๐‘›๐‘›

For a flanged section

๐‘€๐‘€๐‘›๐‘› = ๏ฟฝ๐‘–๐‘–=1

๐‘–๐‘–=๐‘š๐‘š

๐ธ๐ธ๐‘๐‘ ๐‘ ๐‘ ๐‘–๐‘– ๐ธ๐ธ๐‘๐‘ ๐œ€๐œ€๐‘–๐‘– ๐‘‘๐‘‘๐‘–๐‘–๐›ฝ๐›ฝ1๐ธ๐ธ

2+ ๐‘ƒ๐‘ƒ๐‘’๐‘’ ๐‘‘๐‘‘๐‘๐‘

๐›ฝ๐›ฝ1๐ธ๐ธ2

+0.85 ๐‘“๐‘“๐‘๐‘โ€ฒ ๐‘๐‘ ๐‘๐‘ ๐‘๐‘๐‘ค๐‘ค๐›ฝ๐›ฝ1๐ธ๐ธ

2๐‘๐‘

2

For a rectangular section, use the same eqn. with ๐‘๐‘๐‘ค๐‘ค = ๐‘๐‘

COLLEGE OF ENGINEERING

17

COLLEGE OF ENGINEERING

18

COLLEGE OF ENGINEERING

19

COLLEGE OF ENGINEERING

20

COLLEGE OF ENGINEERING

21

COLLEGE OF ENGINEERING

22

COLLEGE OF ENGINEERING

23

COLLEGE OF ENGINEERING

24

M-102 over Plum Creek: Design

Twin 75โ€™ long single span structures, using 33โ€ x 48โ€ side by side box beams prestressed with CFCC

M-102 over Plum Creek: Design

80.03

21

Determination of number of the theoretical number of CFCC strands based on calculation of excess tension in bottom flange based on Service III limit state:

Allow for 0 tension in bottom flange at service, as opposed to allowable

M-102 over Plum Creek: Design

CFCC strand data based on testing:

GUTS = 60.70 kipsAstrand = 0.179 in2

fโ€™pu = 339 ksi โ€“ calculated ultimate tensile strengthCE = 0.90 โ€“ environmental factor per ACI 440.1R-06fpu = 305 ksi โ€“ design ultimate tensile strengthEps = 21,000 ksi

M-102 over Plum Creek: Design

Assume strand eccentricity based on strand center of gravity is between two rows of strands, and equal number of strands in each row:

Strand stress limit prior to transfer:

1

60.0

M-102 over Plum Creek: Design

Assume 25% losses, and calculate the number of strands to start, then refine design based on service and strength limit state checks:

75.0

M-102 over Plum Creek: Design

Need to develop jacking forces to stay below creep-rupture curve, while efficiently providing force to offset excess tension due to applied loads

M-102 over Plum Creek: Fabrication

15.2 mm strand reels โ€“ 1043 m each

M-102 over Plum Creek: Fabrication

Coupled strands, pull steel strands

M-102 over Plum Creek: Fabrication

Monitoring force in strands via load cells

M-102 over Plum Creek: Fabrication

Strand stressing complete, pouring concrete

M-102 over Plum Creek: Fabrication

Reinforcement complete, finishing concrete pour

M-102 over Plum Creek: Fabrication

Completed beam โ€“ no release stress cracking

M-102 over Plum Creek: Deck casting

M-102 over Plum Creek: Deck casting

M-102 over Plum Creek: Completed structures

MDOT/Lawrence Technological University MathCAD Templates:

https://mdotjboss.state.mi.us/SpecProv/trainingmaterials.htm

High-Strength Stainless Steel (HSSS)Prestressed Concrete (PC)

Will Potter

Florida Department of Transportation

Material Development

โ€ข Researchโ€ข Georgia Techโ€ข University of South Florida

โ€ข Materials Evaluatedโ€ข Austenite - 316, 304 and XM-29โ€ข Duplex 2101, 2205 and 2304, โ€ข Martenistic 17-7

โ€ข Current Production Material โ€ข Duplex 2205

Moser et al, 2012

Duplex 2205Provides highest strength and best corrosion resistance among those evaluated

Duplex 2205Mechanical Properties

Duplex 2205 Alloy ASTM A416 PC Strand CFRP

Diameters (in) 0.375 to 0.7* 0.375 to 0.7 0.375 to 0.7**

Tensile Strength (ksi) 240 to 250 250, 270, 300+ 300+

Elongation @ UTS

Duplex 2205 โ€“Material Testing

โ€ข Mechanical Properties w/ Wedge Chucks

โ€ข Initial Stress Limitations (constructability and design)โ€ข 60-65% fpu (conventional steel 75% fpu)

Al-Kaimakchi, 2019

Duplex 2205Material Testing

โ€ข Transfer and Development Length Testingโ€ข AASHTO equations are conservative

โ€ข Bond Strengthโ€ข ASTM A1081

โ€ข Prestress Lossesโ€ข AASHTO equations are adequate

17.8 kip โ€“ average 15.8 kip โ€“ minimum

ASTM A1081

Al-Kaimakchi, 2019

Paul, A. 2017 and Al-kaimakchi, 2019

Constructabilityโ€ข Conventional stressing methods

โ€ข Conventional detensioning methods

โ€ข Limit initial stress

Brown, 2018 Brown, 2018

HSSS-PC Piling

Initial Implementation

Coastal StatesGeorgiaFloridaVirginia

Louisiana

Moser, 2012

St. George Island, FL

HSSS-PC Piling

Projects

Brown, 2018

Sprinkel, 2018 Paul, A, 2015

Cornelius, 2019

Standardization in Florida- Piling -

โ€ข Specificationsโ€ข Design Guidance โ€ข Design Standards

FDOT Structures Design Manual

FDOT Material Specifications

Piling Design Standards

HSSS-PC Flexural Members

โ€ข NO official flexural design guidance, currentlyโ€ข Limited research evaluating flexural design with HSSSโ€ข Ohio DOT โ€“ adjacent box beam brdige

๏ธ๏ธ

๏ธ๏ธ

Al-Kaimakchi, 2019

Flexural Design Considerations

โ€ข Conventional steel strandsโ€ข Yielding of strands followed by

crushing of concrete ( cu = 0.003)

โ€ข Stainless steel strandsโ€ข Crushing of concrete

โ€ข cu = 0.003, pu < 0.014

โ€ข Balanced Condition โ€ข cu = 0.003, pu = 0.014

โ€ข Strand ruptureโ€ข cu < 0.003, pu = 0.014

โ€ข Strength Resistance Factors?

Strain Compatibility Design Approach

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Strain (in./in.)

0

50

100

150

200

250

Stre

ss (k

si)

Stainless steel strands

Prestress Strainafter losses

Available Strain

Initial Strain0.65 fpu

Efforts to Develop Overall Design Guidance

โ€ข Georgia Tech โ€“ completeโ€ข Primary evaluation of piling with limited

evaluation of flexural design

โ€ข FAMU/FSU โ€“ active researchโ€ข Investigating flexural behaviorโ€ข Developing predictive analytical modelsโ€ข Developing design guidance

โ€ข NCHRP โ€“ upcoming research

โ€ข Planned Guidance Options (based on above research)โ€ข AASHTO Guide Specification for Bridge Design

with Stainless Steel Strandโ€ข Incorporate into AASHTO Bridge Design

Specification

References

โ€ข Al-kaimakchi, A. 2019. Flexural Beam Testing Program for Stainless Steel Strands. PCI Committee Days Presentation.

โ€ข Brown, K. 2018. Production of Prestressed Concrete Piles Using Stainless Steel. ASPIRE Magazine. P30-32.

โ€ข Cornelius, J. 2019. Prestressing Steel โ€“ New and Existing Products Overview. PCI Committee Days Presentation.

โ€ข Moser et al. 2012. Durability of Precast Prestressed Concrete Piles in Marine Environment, Part 2, Volume 2: Stainless Steel Prestressing Strand & Wire. GDOT Project No. 10-26, Task Order No. 02-78.

โ€ข Paul, A. L. F. Kahn, and K. E. Kurtis. 2015. Corrosion-Free Precast Prestressed Concrete Piles Made with Stainless Steel Reinforcement: Construction, Test and Evaluation. Report no. FHWA-GA-15-1134. Atlanta: Georgia Institute of Technology.

โ€ข Paul, A. L. B. Gleich, L. F. Kahn. 2017. Structural Performance of Prestressed Concrete Bridge Piles Using Duplex Stainless Steel Strands. ASCE Journal of Structural Engineering.

โ€ข Paul, A. L. B. Gleich, L. F. Kahn. 2017. Transfer and development length of high-strength duplex stainless steel strand in prestressed concrete piles. PCI Journal May-June 2017.

1

Advanced Structural Materials for Concrete Bridges

1. Introduction of current needs in bridge durability & Advanced Structural Materials of interest (Matthew Chynoweth)

2. CFRP-PC Design guidance & standards documents (Matthew Chynoweth)

3. HSSS-PC Design guidance & standards documents(Will Potter)

4. UHPC Design guidance & standards documents(Kyle Riding)

5. FRP-RC Design guidance & standards documents (Antonio Nanni)

6. Life-Cycle Cost analysis strategies(Antonio Nanni)

7. Moderated Question & Answer(Steven Nolan)

1

2

Ultra-High Performance Concrete

โ€œUHPC is limited to concrete that has a minimum specified compressive strength of 22,000 psi (150 MPa) with specified durability tensile ductility and toughness requirements; fibers are generally included to achieve specified requirements. UHPC typically exhibits elastic-plastic or strain-hardening characteristics under uniaxial tension and has a very low permeability due to its dense and discontinuous pore structure.โ€ -ACI 239

Precast/ Prestressed Concrete Institute (PCI) is going to define UHPC as concrete with 18 ksi compressive strength

3

Map of Known UHPC Bridge Projects

https://usdot.maps.arcgis.com/apps/webappviewer/index.html?id=41929767ce164eba934d70883d775582

4

Benefits of UHPC

Tensile performance can allow you to reduce amount of steel reinforcementCan optimize geometry for lighter member to reduce shipping costs and crane sizeReduce cover dimensions?Dense and discontinuous microstructure can give very high durability โ€“ alternative to stainless steel and FRP reinforcement

5

UHPC Application Example: Connections & Repair

Mixing โ€“ high energy needed Placing Curing(long mixing time or high shear mixer needed)

6

UHPC Application Example: Piles

7

UHPC Application Example: Potential Pile Shapes

Hollow PilesH-Piles

Geometry optimized to reduce weight and material use, increase skin friction

Tested in 2008 โ€“ see Voort, Suleiman, and Sritharan, Design and Performance Verification of Ultra-High Performance Concrete Piles for Deep Foundations

Maher Tadros, PCI Presentation 2018

8

UHPC Application Example: Piles

Picture courtesy of Miles Zeeman

9

UHPC Pile Driving Test100 ft. Test pile driven in Leesburg, FL

10

UHPC Application Example: Segmental Construction

Pedestrian Bridge in Medellin, Colombia Built in 2017 First Bridge in Colombia made from UHPCSaved 30% compared to alternative steel designCurrently constructing 2nd bridgeAlso adapting UHPC for pavement overlays

17400 psi (120 MPa) concrete

11

UHPC Application Example: Segmental Construction

361 ft long bridge4 spansMain Span is 141 ft. long29 precast segments, 10 tons each24 post-tension cables

Nunez, Patino, Arango, and Echeverri, โ€œREVIEW ON FIRST STRUCTURAL APPLICATIONS OF UHPC IN COLOMBIA,โ€ Second International Interactive Symposium on UHPC, Albany, NY., June 2-5, 2019, Paper 118.

12

UHPC Application Example: Hybrid Girders

Figure courtesy of Eduardo Torres and Trey Hamilton

UHPC

Self-Consolidating Concrete

UHPC used on end-regions to reduce end-cracking, and potentially allow for longer spans

13

Fresh Property Testing: Flow TestingASTM C1856 โ€“ use ASTM C1437 flow table and cone, without base and without performing dropsMeasure the flow 120 ยฑ 5 s after lifting mold to nearest 1 mm (ave. of 2 measurements)

Recommendation: 8 to 14 in. flow diameter (Wille 2011)

14

Stress-Strain Relationships

fc

c,y c,u

Compressive Stress-Strain Behavior

E

fct

cc pu

Tensile Stress-Strain Behavior

E

Based on ACI 239R18 Based on FHWA-HIF-13-032

15

Constitutive Relationships and Ultimate Limit State for UHPC with Macro-Reinforcement

Concrete

Steel

M

Beam FBD Strain

--

+

s

Figures based on ACI 239R18

-u,t

u,c

s

c

Ft,c

Ft,s

Fc,c

Stress from Stress-Strain Relationship Forces

16

24-hour 4-day 7-day 28-dayBefore traffic opening

Alabama 14 (97) 21 (145) 14 (97)Delaware 14 (97)Idaho 14 (97) 20, 25 (138, 172)*Iowa 10 (69) 15 (103)Maine 21 (145)

Michigan 15 (103)

Nebraska 21 (145)New Jersey 5.7 (39) 11.6 (80) 14.5 (100)New Mexico 14 (97) 21 (145)New York 12 (83) 21 (145)Texas 14 (97) 21 (145)West Virginia 12 (83) 15 (103)Ontario 11.6 (80) 18.9 (130)

Canada17.4, 21.7 (120, 150)โ€ 

France18,850-36,300 (130-250) +

Switzerland 17.4 (120)

Compressive Strength Requirement

Values given in psi (MPa)

ASTM C1856 modifies ASTM C39 to use 3 ร— 6 in. cylinders

17

Tensile strength Flexural strengthFlexural Tough.

ksi (MPa) ksi (MPa) ASTM C1018

Alabama AASHTO T 198, 1.0 (6.9) splitting

Delaware

Idaho ASTM C293, 2 (14)IowaMichiganNew Jersey I30New MexicoNew York I30Texas I30

Ontario ASTM C1609, 2.2 (15)

Canada 0.58, 0.73 (4, 5), direct tension

0.58, 0.73 (4, 5) with inverse analysis

Tensile Strength Requirement

18

Qualification Tensile Testing Direct Tension Test ASTM C1609 modified by ASTM C1856

Friction in support conditions can increase flexural capacity 30-60% (Wille and MontesinosWille, K., & Parra-Montesinos, G. (2012). Effect of beam size, casting method, and support conditions on flexural behaviour of UHPFRC. ACI Materials Journal, 109(3), 379โ€“388.)

19

Direct Tension Test Direct Tension Test Samples After Testing

-1500

-1000

-500

0

500

1000

1500

0 0.005 0.01 0.015 0.02

Stre

ss (p

si)

Strain

0

90

180

270

Average

side

2 ร— 2 ร— 17 in. samples

20

Durability RequirementsProperty

Chloride Ion Penetrability Shrinkage

Chloride Ion Penetrability Scaling

Resistance

Freeze-Thaw Abrasion Resistance Alkali-Silica

Reactivity(coulombs) (microstrain) (oz/ft3) (RDM %) (oz.)

Test Method ASTM C1202/ AASHTO T 277 ASTM C157 AASHTO T259 ASTM C672

ASTM C666A, 600 cycles

ASTM C944, 2x weight ASTM C1260

Alabama T160 < 0.026

Delaware <0.07, ยฝ in. (13mm) depth y < 3 > 95% 0.08%, test at 28

days

Idaho < 250 < 765, initial reading after set

< 0.07, 1/4th in. (6mm) depth y < 3 > 96% < 0.025, ground

surface

ASTM C1567, < 0.10%, test at 28 days

New Jersey <1.0, ยฝ in. (13mm) depth y < 3 > 96% < 0.03 Innocuous, test at

28 days

New Mexico <0.059, ยฝ in. (13mm) depth No scaling > 99%, 300 cycles < 0.026 < 0.10%,

Innocuous

New York reading after set< 0.07, 1/5th in. (5mm) depth y < 3 > 96% < 0.025, ground

surfaceInnocuous, test at 28 days

Texas y < 3 > 96%, 300 cycles < 0.1%

Canada <500, <300, <100

X (different method)

CSA A23.2-22C 0.4,0.2,0.1 kg/m2 <5, <1, <0.5 g

21

Design-Related Properties

Creep coefficient (ACI 239R18)0.31 (steam cured)0.8 (non-heat cured)

Negligible shrinkage after heat curingElastic Modulus: 6000 to 7200 ksi (function of fibers and fc)

https://www.fhwa.dot.gov/publications/lists/022.cfm

FHWA has published many reports on UHPC:

22

Options for UHPCPre-blended, prebagged, proprietary UHPC

Comes with support from manufacturerProven resultsHigh cost ($2000-3000/yd3)

Make-your-own UHPC with local materialsHigh knowledge base needed (can hire consultants to help)Can get 18-22ksi with local materials without too much difficultyCan save 30-74%1 from cost of preblended materialsGuidelines/ papers on how to make UHPC with local materials

Development of ultra-high performance concrete with locally available materials https://doi.org/10.1016/j.conbuildmat.2016.12.040Development of Cost-Effective Ultra-High Performance Concrete (UHPC) for Coloradoโ€™s Sustainable Infrastructure 1Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way DOI: 10.14359/51664215Design and per Design and performance of cost-eff formance of cost-effective ultra-high per a-high performance formanceconcrete for prefabricated elements https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=3587&context=doctoral_dissertations

Biggest cost is fibersMade in USA steel fibers available

1 Kim, โ€œDevelopment of Cost-Effective Ultra-High Performance Concrete (UHPC) for Coloradoโ€™s Sustainable Infrastructure,โ€ Final Report, CDOT-2018-15, 2018.

23

Implementation ChallengesHigh amount of QC needed, especially for fiber distribution, orientation, and plant-ready tensile testExperienced contractors/ precasters needed

Placement direction impacts fiber alignment & tensile strength

Mixing time 15-30 minutes, much shorter with high shear mixerWorking time is short โ€“ once you stop agitating it, can lose workability rapidly and form โ€œelephant skinโ€New UHPC does not bond well to old UHPCStructural design equations made for conventional concrete can work, but donโ€™t fully take advantage of UHPC (ie. Creep, development length, etc.)Most durability testing done on UHPC with fcโ€™ >150 ksiSpecifications need to catch up with material

Example of specifications that need updating: ACI 318-19 Air Entrainment Requirements

Nominal Max. Agg. Size (in.)

Target Air Content, F1 (%)

Target AirContent, F2 & F3 (%)

3/8 6.0 7.5

1/2 5.5 7.0

3/4 5.0 6.0

1 4.5 6.0

1-1/2 4.5 5.5

2 4.0 5.0

3 3.5 4.5

FRP-RC Design Guidance & Standards Documents

+ Life-Cycle Cost analysis strategies

TRB Webinar Date: December 3, 1:00-2:30pm ESTModerator: Steven Nolan

Presenter: Antonio NanniUniversity of Miaminanni@Miami.edu

2

Advanced Structural Materials for Concrete Bridges

1. Introduction of current needs in bridge durability & materials of interestโ€ข CFRP & HSSS prestressing; FRP rebar;

UHPC

2. CFRP-PC Design guidance & standards documents (Matthew Chynoweth)โ€ข Costs and Design toolsโ€ข Implementation challenges

3. HSSS-PC Design guidance & standards documents (Will Potter)โ€ข Costs and Design toolsโ€ข Implementation challenges

4. UHPC Design guidance & standards documents (Kyle Riding)โ€ข Costs and Design toolsโ€ข Implementation challenges

5. FRP-RC Design guidance & standards documents (Antonio Nanni)โ€ข Costs and Design toolsโ€ข Implementation challenges

6. Life-Cycle Cost analysis strategies (Antonio Nanni)โ€ข ASM comparisons and synergiesโ€ข Future enhancements or needs

7. Moderated Question & Answer(Steven Nolan)

2

3

OF Contents

ยท Problem Statementยท FRP Materials and Design Propertiesยท Guides, Standards and Specsยท Where to use GFRPยท What do we still needยท Field Applications in Floridaยท Cost Justification (Service Life, LCC & LCA)ยท Conclusions

3

4SERVICE LIFE GREATLY REDUCED BY CORROSION

Problem Statementโ€ข Cause of failure for structures

exposed to aggressive environments is often corrosion of steel reinforcement

โ€ข Chlorides from de-icing salts or seawater penetrate concrete and reach steelรผ via cracks รผ via concrete porosity

โ€ข Corrosion is accelerated by carbonation that lowers concrete pH

4

5

Traditional corrosion mitigation efforts center on keeping chlorides from getting to reinforcing steel or simply delaying the diffusion time

State-of-Practice

โ€ข Admixturesโ€ข Increase Concrete Coverโ€ข Alter Concrete Mixโ€ข Membranes & Overlaysโ€ข Epoxy-Coated, Galvanized

or Stainless Steel

5DELAYING SYMPTOMS RATHER THAN CURING DISEASE

Photo: Courtesy of TxDOT

6

OF Contents

ยท Problem Statementยท FRP Materials and Design Propertiesยท Guides, Standards and Specsยท Where to use GFRPยท What do we still needยท Field Applications in Floridaยท Cost Justification (Service Life, LCC & LCA)ยท Conclusions

6

FRP Bars, Strands and Grids Typically produced by the Pultrusion process

8

Production Process (Pultrusion)

.

9

Factors Affecting Material Characteristics

โ€ข Fiber volumeโ€ข Type of fibersโ€ข Type of resinโ€ข Fiber orientationโ€ข QC during manufacturingโ€ข Rate of curingโ€ข Void contentโ€ข Service temperature

10

Tensile Behaviorโ€ข Tensile properties obtained from bar manufacturerโ€ข Manufactures must report a guaranteed tensile strength f*fu, as

mean tensile strength minus three standard deviations

โ€ข Similarly, a guaranteed rupture strain

11

Critical Design Provisions

Flexural Resistance

Shear Resistance

GFRP Design Tensile Strength

Ultimate capacity provisions:

11

12

Critical Design Provisions

GFRP Creep Rupture Strength

GFRP Fatigue Strength

Spacing for Crack Control

12

Fatigue and serviceability provisions:

13

13

Evaluation of Durability: Selected Bridgesโ€ข Eleven bridges located across the United Statesโ€ข Each bridge contains GFRP bars in deck or other location

and has been in service for at least 15 years

โ€ข Gills Creek Bridge (VA)โ€ข Oโ€™Fallon Park Bridge (CO)โ€ข Salem Ave Bridge (OH)โ€ข Bettendorf Bridge (IA)โ€ข Cuyahoga County Bridge (OH)โ€ข McKinleyville Bridge (WV)โ€ข Thayer Road Bridge (IN)โ€ข Rogerโ€™s Creek Bridge (KY)โ€ข Sierrita de la Cruz Creek Bridge (TX) โ€ข Walker Box Culvert Bridge (MO)โ€ข Southview Bridge (MO)

14

.

Sierrita de la Cruz Creek Bridge, Texas โ€ข Location: 25 miles northwest Amarillo, TXโ€ข Agency: Texas DOTโ€ข Year Built: 2000โ€ข Geometry: 7 spans, 553 ft. long, 45 ft. wideโ€ข Bridge Type: GFRP deck top mat, concrete deck on PC girders

Selected Bridges (Example)

15

GFRP Tests: Modified Tensile Strength Testโ€ข Extracted and virgin coupons were tested in tensionโ€ข Virgin new generation full-size bars were also tested in tension

โ€ข The results of virgin full-size bars from tensile tests performed in 2000 were used for comparison

โ€ข A correlation was calculated to determine the tensile strength of the extracted bars

Sample Full-sizeStrength, psi

CouponStrength, psi

Coupon to Full-size

Pristine 119,318 96,997 18.71%

Extracted Bars 113,840a 90,110 20.84%

Difference due to degradation % 2.13%

Note: a = Tested in 2000

16

OF Contents

ยท Problem Statementยท FRP Materials and Design Propertiesยท Guides, Standards and Specs

ACI and ASTMAASHTO, Florida DOT, and Texas DOT

ยท Where to use GFRPยท What do we still needยท Field Applications in Floridaยท Cost Justification (Service Life, LCC & LCA)ยท Conclusions

16

17

How To Specify for Building Structures

SPECIFYING AND CONSTRUCTING WITH GFRP BARS17

18

.

Update on AASHTO Activities related to FRP bars for Bridge Structures

19

.

Harmonize with national (ACI, ASTM and AASHTO-BDS) andinternational (CSA) specifications.

โ€ข Ease design/deploymentโ€ข Ease certificationโ€ข Enlarge market

Update existing provisions to reflect better materials andmanufacturing, and new research findings.

โ€ข Make design more efficient

Expand provisions to include all members of a bridge.

โ€ข Allow the design of a bridge entirely GFRP-RC

Approach and Relevance of expanded 2018 AASHTO Guide Spec.

20

Comparison of Critical Design ParametersAASHTO 2nd 2018

AASHTO 1st 2009

ACI 440 Code 2021?

ACI 440.1R2015

ffu* 99.9 99.9 99.9 99.9 Strength percentileC 0.75 0.65 0.65 0.65 Res. fact. concr. failureT 0.55 0.55 0.55 0.55 Res. fact. FRP failureS 0.75 0.75 0.75 0.75 Res. fact. shear failure

CE 0.70 0.70 0.90 0.70 Environm. reductionCC 0.30 0.20 0.30 0.20 Creep rupt. reductionCf 0.25 0.20 n/a 0.20 Fatigue reductionCb 0.83 0.70 0.70 to 0.83 0.70 Bond reductionw 0.027 0.0200 0.027 0.020 to 0.027 Crack width limit [in.]

cc,stirrup 1.5 1.5 2.0 2.0(1) Clear cover [in.]cc,slab 1.0 0.75 to 2.0 0.75 to 2.0 0.75 to 2.0(1) Clear cover [in.]shear 0.004 0.004 0.004 0.004 Strain limit in shear

(1) ACI 440.5-08 Table 3.1To be finalized

20

21

โ€ข Mandatory Specsโ€ข Uniform Approval Processes

- Manufacturer Approval vs. Product Approvalโ€ข Design Tools

Design Guidance & Tools: Florida DOT

https://www.fdot.gov/structures/innovation/FRP.shtm

22

โ€ข Uniform Approval Processes- Manufacturer Approval & Certification vs. Product Approval

https://mac.fdot.gov/smoreports

Design Guidance & Tools: Florida DOT

23

โ€ข Need for Accessible & Reliable Design Tools- Commercial vs. Agency/Institution based design programs

https://www.fdot.gov/structures/proglib.shtm

** Available on request

CFRP-PC (w/ GFRP-RC Shear) Beta version **

GFRP-RC Alpha version **

GFRP-RC included (3b)

GFRP-RC in development !

Design Guidance & Tools: Florida DOT

24

Example of other DOT Activities related to FRP bars.

Texas DOT:Update of bridge deck design using GFRP Top Mat in accordance with 2018 AASHTO Guide Spec

25

Texas DOT: top-mat GFRP reinforcement

26

Ohio DOT: Bridge deck GFRP reinforcement

Maine DOT: Bridge deck GFRP reinforcement

Other Active DOTs in the use of FRP bars

27

OF Contents

ยท Problem Statementยท FRP Materials and Design Propertiesยท Guides, Standards and Specsยท Where to use GFRPยท What do we still needยท Field Applications in Floridaยท Cost Justification (Service Life, LCC & LCA)ยท Conclusions

28

โ€ข Concrete members susceptible to steel corrosion by chlorides or

โ€ข low concrete pHโ€ข Concrete members requiring non-

ferrous reinforcement due to electro-magnetic considerations

โ€ข Need of thermal non-conductivity

Where Should FRP be Used?

ALTERNATIVE TO EPOXY, GALVANIZED AND STAINLESS STEEL REBAR

29

โ€ข Seawalls, Piles and Piersโ€ข Marine Structuresโ€ข Bridge Decks โ€ข Traffic Railingsโ€ข Approach Slabsโ€ข Barrier / Retaining Wallsโ€ข Culvertsโ€ข Sewage System Tunnelingโ€ข Parking Garages

Infrastructure Applications

30

OF Contents

ยท Problem Statementยท FRP Materials and Design Propertiesยท Guides, Standards and Specsยท Where to use GFRPยท What do we still needยท Field Applications in Floridaยท Cost Justification (Service Life, LCC & LCA)ยท Conclusions

30

31

What do we still need? Refinement of conservative Design Limits

2021?

To be finalized

32

What do we still need? Gaps in Design & Deployment

โ€ข Connections (post-installed & couplers)

โ€ข Fatigue limitsโ€ข Elastic modulusโ€ข Bent barsโ€ข Scalability of production

1700+ adhesive-dowelled anchors (HRB 2019)

33

OF Contents

ยท Problem Statementยท FRP Materials and Design Propertiesยท Guides, Standards and Specsยท Where to use GFRPยท What do we still needยท Field Applications in Floridaยท Cost Justification (Service Life, LCC & LCA)ยท Conclusions

33

34

Project Examples: FAST FACTS

Fast-Facts: https://www.fdot.gov/structures/innovation/FRP.shtm#link9

35

Homosassa, FL 2017-19 (GFRP-RC & CFRP-PC) Five-span vehicular bridge

July 16, 2019

Fast-Facts: https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/structures/innovation/fastfacts/fastfacts-430021-1.pdf

Project Examples: HALLS RIVER BRIDGE

36

Six-man crew can assemble complete bent cap GFRP rebar cage in 4.5 hours

Project Examples: HALLS RIVER BRIDGE

37

University of Miami โ€“ Completed 2016:

Project Examples: INNOVATION PEDESTRIAN BRIDGE

Fast-Facts: https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/structures/innovation/fastfacts/fastfacts-innovationbridge-um.pdf

Elevation view of Innovation Bridge with BFRP reinforcement in the auger-cast-piles, bent-caps, double-tee stems and flanges, deck overlay and curbs

38

CIP continuous flat-slab bridge under construction 2019:

Project Examples: NE 23RD AVE overIBIS WATERWAY

Fast-Facts: https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/structures/innovation/fastfacts/fastfacts-434359-1.pdf?sfvrsn=175168c2_2

39

2016 conditions prior to 5,000โ€™ of Secant-Pile Wall construction (2019)

Remains left after Hurricane Matthew destructive forces resulted in โ€œwash-outโ€ and destruction of the essential State Road A1A, which is an Evacuation Route

Project Examples: SR-A1A SECANT-PILESEAWALL

40

GFRP-CAGES AT WORK

Seawallโ€™s auger-cast concrete secant-piles are 36-inch (910 mm) diameter. Primary piles are 36-feet (11 m) in length and are reinforced with 25 ~ #8 GFRP bars.

Fast-Facts: https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/structures/innovation/fastfacts-440557-7.pdf?sfvrsn=73e5bc6a_2

Project Examples: SR-A1A SECANT-PILESEAWALL

OF Contents

ยท Problem Statementยท FRP Materials and Design Propertiesยท Guides, Standards and Specsยท Where to use GFRPยท What do we still needยท Field Applications in Floridaยท Cost Justification (Service Life, LCC & LCA)ยท Conclusions

41

LCC & LCA also can show the sustainable (economic and environmental) advantage of FRP-RC structures in the coastal environment:

Cost Justification (Service Life, LCC & LCA)

Example: LCC & LCA Comparison of Carbon Steel-RC/PC versus FRP-RC/PC (various effective discount rate), adapted from Cadenazzi et al. 2019 42

CS-RC/PC Bridge Replacement

FRP-RC/PC Bridge Replacement

43

Younis et al., 2018: Carbon-Steel vs. SSR vs. GFRP rebar

https://doi.org/10.1016/j.conbuildmat.2018.04.183

(Baseline scenario with discount rate = 0.7%)

RC1 = Traditional concrete mix with carbon-(black) steel rebar;RC2 = Traditional concrete mix with SS rebar;RC3 = Concrete with seawater & RCA with GFRP rebar.

Cost Justification (Service Life, LCC & LCA)

Performance as a function of maintenance:

CS-RC/PC alternative SS or FRP-RC/PC alternativesCadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., and A. Nanni. (2019). Cost and Environmental Analyses of Reinforcement Alternatives for a Concrete Bridge. Structure and Infrastructure Engineering 44

Cost Justification (Service Life, LCC & LCA)

CE effect

www.ASCEgrandchallenge.comโ€œReduce the life cycle cost of infrastructure by 50% by 2025 and foster the optimization of infrastructure investments for societyโ€

Rebar Example Cost Comparisons:

โ€ข Cost information based of Contractor bid pricesโ€ข Price of epoxy reinforcing @ $1.00/LB

Anthony Wayne Trail over NSRR Cost Per Square Foot of Deck

Epoxy Coated Reinforcing $8.052/SF

GFRP Reinforcing (GFRP 1st Edition) $9.587/SF

GFRP Reinforcing (GFRP 2nd Edition) $8.736/SF

45

Cost Justification (Service Life, LCC & LCA)

โ€ข Cost information is from Engineerโ€™s estimateโ€ข Price of epoxy reinforcing @ $1.15/LBโ€ข Recent increase in steel cost (15%-20% Increase)

โ€ข Result in more competitive costs

Industrial Drive over the Maumee River

Cost Per Square Foot of Deck

Epoxy Coated Reinforcing $11.805/SF

GFRP Reinforcing $10.609/SF

46

Rebar Example Cost Comparisons:

Cost Justification (Service Life, LCC & LCA)

OF Contents

ยท Problem Statementยท FRP Materials and Design Propertiesยท Guides, Standards and Specsยท Where to use GFRPยท What do we still needยท Cost Justification (Service Life, LCC & LCA)ยท Field Applications in Floridaยท Conclusions

47

Conclusions

โ€ข Complete set of guides, test methods and standards available for GFRP bars

โ€ข Many structures successfully built with GFRP bars and performing wellโ€ข Non-proprietary solutions, traditional supply chain acquisition &

installation availableโ€ข Extended service life of GFRP reinforced concrete ensured โ€ข Current practices adopted for corrosion protection are unnecessary with

GFRP reinforcementโ€ข New frontiers to be explored to improve resilience and sustainability

48

Thank you for your attention!

The End

49

Todayโ€™s Speakersโ€ข Steven Nolan, Florida DOT,

steven.nolan@dot.state.fl.usโ€ข Matt Chynoweth, Michigan DOT,

ChynowethM@michigan.govโ€ข William Potter, Florida DOT,

William.Potter@dot.state.fl.usโ€ข Kyle Riding, University of Florida,

kyle.riding@essie.ufl.eduโ€ข Tony Nanni, University of Miami,

nanni@miami.edu

Get Involved with TRBโ€ข Getting involved is free!โ€ข Join a Standing Committee (http://bit.ly/2jYRrF6)โ€ข Become a Friend of a Committee

(http://bit.ly/TRBcommittees)โ€“ Networking opportunitiesโ€“ May provide a path to become a Standing Committee

memberโ€ข Sponsoring Committees: AFF30, AFF80โ€ข For more information: www.mytrb.org

โ€“ Create your accountโ€“ Update your profile

top related