a les-langevin model

Post on 31-Jan-2016

50 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

A LES-LANGEVIN MODEL. Colls: R. Dolganov and J-P Laval N. Kevlahan E.-J. Kim F. Hersant J. Mc Williams S. Nazarenko P. Sullivan J. Werne. B. Dubrulle Groupe Instabilite et Turbulence CEA Saclay. IS IT SUFFICIENT TO KNOW BASIC EQUATIONS?. Giant convection cell. Dissipation - PowerPoint PPT Presentation

TRANSCRIPT

A LES-LANGEVIN MODEL

B. Dubrulle

Groupe Instabilite et Turbulence

CEA Saclay

Colls: R. Dolganov and J-P LavalN. KevlahanE.-J. KimF. HersantJ. Mc WilliamsS. NazarenkoP. SullivanJ. Werne

IS IT SUFFICIENT TO KNOW BASIC EQUATIONS?

E(k)kGrandes EchellesPetites EchellesFlux d’Energie(Viscosité Turbulente)(Paramétrisées)Explosion90 % des ressources informatiques

Waste of computational resourcesTime-scale problem

Necessity of small scale parametrization

Giant convectioncell

Solarspot

GranuleDissipation scale

0.1 km 103km 3⋅104 km 2⋅105 km

Influence of decimated scales

Typical time at scale l: δt≈lu

∝ l2

3

Decimated scales (small scales) vary very rapidlyWe may replace them by a noise with short time scale

u=u +u'

Dtu' i =Aiju' j +ξj

ξi x,t( )ξj x',t'( ) =κ ij x,x'( )δ t−t'( )

Generalized Langevin equation

Obukhov ModelSimplest case

u =0

Aij =−γδij, γ >>δt

κ ij x,x'( ) ∝γδij

No mean flow

Large isotropic frictionNo spatial correlations

P(

r x ,

r u ,t) =

32πεt2

⎝ ⎜ ⎜

⎠ ⎟ ⎟ exp−

3x2

εt3 −3r x •

r u

εt2 −u2

εt

⎝ ⎜ ⎜

⎠ ⎟ ⎟

u∝ εt

x∝ ε2/3t3/ 2

u∝ x1/ 3

Gaussian velocities

Richardson’s law

Kolmogorov’s spectraLES: Langevin

Influence of decimated scales: transport

r x •

=r u +

r u '

r Ω =

r ∇ ×

r u

r Ω •

=(r Ω •

r ∇ )

r u +(

r Ω •

r ∇ )

r u '

∂tΩi +u k∇kΩi =Ωk∇kui +∇ k βkl∇l Ωi[ ]+2αkil∇kΩ l

βkl = uk' ul

'

αijk = ui'∂kuj

'Stochastic computation

Turbulent viscosity AKA effect

Refined comparison

True turbulenceAdditive noise

GaussianityWeak intermittency

Non-GaussianitéForte intermittence

˙ u =−γu+η

PDF of increments

SpectrumIso-vorticity

LES: Langevin

LOCAL VS NON-LOCAL INTERACTIONS

• Navier-Stokes equations : two types of triades∂tu +u•∇ u=−∇ p+ν Δu+ f

Nl

L

L

l

LOCAL NON-LOCAL

LOCAL VS NON-LOCAL TURBULENCE

NON-LOCAL TURBULENCE

∂tU + (U • ∇)U = −∇p + u ×ω + νΔU

∂tω =∇ × U ×ω( ) + ηΔω

E = U 2 + u2( )∫ dx

Hm = u • ω dx∫Hc = U • ω dx∫

Analogy with MHD equations: small scale grow via « dynamo » effect

Conservation lawsIn inviscid case

E

k

U

A PRIORI TESTS IN NUMERICAL SIMULATIONS

2D TURBULENCE

3D TURBULENCE

U ∇ u

u∇ u

U ∇ U

u∇ U

Local large/ large scales

Local small/small scales

Non-local

<<

DYNAMICAL TESTS IN NUMERICAL SIMULATIONS

2DDNS

3DDNS

2DRDT

3DRDT

THE RDT MODEL

∂t Ui +U j ∇ j Ui =−∇iP +ν ΔUi −∇ j uiU j +ujUi +uiuj( )

∂t ui + U j ∇ j ui = −u j∇ jU i −∇ i p + ν t Δ ui + f i

Equation for large-scale velocity

Equation for small scale velocity

Reynolds stresses

Turbulent viscosity Forcing (energy cascade)

Computed (numerics) or prescribed (analytics)

Linear stochastic inhomogeneous equation(RDT)

THE FORCING

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2

< F( t )F( t

0 ) >

t-t0

1

10

100

1000

10 4

10 5

10 6

10 7

-100 -50 0 50 100

P(x)

x

CorrelationsPDF of increments

Iso-force Iso-vorticity

TURBULENT VISCOSITY

DNS RDTSES

νt =Cv

25

q−2E(q)dqk

LANGEVIN EQUATION AND LAGRANGIAN SCHEME

∂t ui +U j ∇ j ui =−∇i p+νt Δui + fi

GT u( ) x,k[ ]= dx'∫ f x−x'( )eik(x−x')u x'( )

x

k

Décomposition into wave packets

Dtu=−νTk2u+u•∇ 2

kk2

U •k−U⎛

⎝ ⎜

⎠ ⎟ +f

Dt x=U

Dtk=−∇ U •k( ) The wave packet moves with the fluidIts wave number is changed by shear

Its amplitude depends on forces

friction “additive noise”

coupling (cascade)“multiplicative noise”

COMPARISON DNS/SES

Fast numerical 2D simulation

Computational time10 days 2 hours

DNS Lagrangian model

(Laval, Dubrulle, Nazarenko, 2000)

QuickTime™ and aGIF decompressor

are needed to see this picture.

Shear flow

QuickTime™ and aBMP decompressor

are needed to see this picture.

Hersant, Dubrulle, 2002

SES SIMULATIONS

Experiment

DNS

SES

Hersant, 2003

LANGEVIN MODEL: derivation

∂t ui + U j ∇ j ui = −u j∇ jU i −∇ i p + ν t Δ ui + f i

Equation for small scale velocity

Turbulent viscosity

Forcing

∇ u u −u u ( )

1

10

100

1000

10 4

10 5

10 6

10 7

-100 -50 0 50 100

P(x)

x

Isoforce

PDF

LES: Langevin

Equation for Reynolds stress

τij =u iu j −u iu j +u iu' j +u' i u j +u'i u' j

=u iu j −u iu j + Lij −2νT Sij

∇ jLij =l i

∂t

r l =−

r ω ×

r l +

r ∇ ×

r l [ ]×

r u ( )

⊥+νtΔ

r l +

r ξ

r ξ =−

r ω ×

r f +

r ∇ ×

r f [ ]×

r u ( )

with

Generalized Langevin equation

Forcing dueTo cascade

AdvectionDistorsionBy non-local interactions

LES: Langevin

Performances

LES: Langevin

Spectrum Intermittency

Comparaison DNS: 384*384*384 et LES: 21*21*21

Performances (2)

LES: Langevin

Q vs R

s probability

Q =1

2SijS ji

R =1

3SijS jkSki

s = −3 6αβγ

α 2β 2γ 2( )

THE MODEL IN SHEARED GEOMETRY

Basic equations

∂tUθ =−1r2

∂rr2 uruθ +νΔUθ

Dtur =2krkθ

k2Ω +S( )ur +2Ωuθ 1−

kr2

k2

⎝ ⎜

⎠ ⎟ −νTk

2uθ +Fr

Dtuθ =2kθ

2

k2Ω +S( )ur −

krkθ

k22Ωuθ − 2Ω +S( )ur −νTk

2uθ +Fθ

Dtuz =2kθkz

k2Ω+S( )ur −

krkz

k22Ωuθ −νTk

2uz +Fz

Equation for mean profile

RDT equations for fluctuationswith stochasticforcing

ANALYTICAL PREDICTIONS

Mean flow dominates Fluctuations dominates

Low Re

G =1.46η2

1−η( )7/ 4 Re3/2

G =0.5η2

1−η( )3/2

Re2

ln(Re2)3/ 2

TORQUE IN TAYLOR-COUETTE

10 5

10 6

10 7

10 8

10 9

10 10

10 11

100 1000 10 4 10 5 10 6

G

Re

10 4

10 5

10 6

10 7

10 8

10 9

10 10

100 1000 10 4 10 5

G

R

η = 0.68

η = 0.935

η = 0.85No adjustable parameter

Dubrulle and Hersant, 2002

top related