6.003 signal processingย ยท ๐ดโˆ™, in terms of f[k]? previously(lecture 2b) let x[k] represent the...

Post on 18-Oct-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

6.003 Signal Processing

Week 3, Lecture A:CTFS properties

6.003 Fall 2020

Continuous Time Fourier Series

Synthesis:

Analysis:

Today: useful properties of CTFS

Properties of CTFS: Linearity

โ€ข Consider ๐‘ฆ ๐‘ก = ๐ด๐‘ฅ1 ๐‘ก + ๐ต๐‘ฅ2 ๐‘ก , where ๐‘ฅ1 ๐‘ก and ๐‘ฅ2 ๐‘ก are periodic in T. What are the CTFS coefficients ๐‘Œ[๐‘˜], in terms of ๐‘‹1[๐‘˜]and ๐‘‹2[๐‘˜] ?

6.003 Fall 2020

First, ๐‘ฆ ๐‘ก must also be periodic in T

Properties of CTFS: Time flip

โ€ข Consider ๐‘ฆ ๐‘ก = ๐‘ฅ โˆ’๐‘ก , where ๐‘ฅ ๐‘ก is periodic in T. What are the CTFS coefficients ๐‘Œ[๐‘˜], in terms of ๐‘‹[๐‘˜]?

6.003 Fall 2020

First, ๐‘ฆ ๐‘ก must also be periodic in T

๐‘ฅ ๐‘ก =

๐‘˜=โˆ’โˆž

โˆž

๐‘‹[๐‘˜]๐‘’๐‘—2๐œ‹๐‘˜๐‘ก๐‘‡ ๐‘ฆ ๐‘ก = ๐‘ฅ(โˆ’๐‘ก) =

๐‘˜=โˆ’โˆž

โˆž

๐‘‹[๐‘˜]๐‘’๐‘—2๐œ‹๐‘˜(โˆ’๐‘ก)

๐‘‡

Let ๐‘š = โˆ’๐‘˜

๐‘ฆ ๐‘ก = ๐‘ฅ(โˆ’๐‘ก) =

๐‘š=โˆ’โˆž

โˆž

๐‘‹[โˆ’๐‘š]๐‘’๐‘—2๐œ‹๐‘š๐‘ก๐‘‡

๐‘ฆ ๐‘ก =

๐‘š=โˆ’โˆž

โˆž

๐‘Œ[๐‘š]๐‘’๐‘—2๐œ‹๐‘š๐‘ก๐‘‡

Since we know

๐‘Œ[๐‘˜] = ๐‘‹[โˆ’๐‘˜]

If ๐‘ฆ ๐‘ก = ๐‘ฅ โˆ’๐‘ก , ๐‘Œ[๐‘˜] = ๐‘‹[โˆ’๐‘˜]

Symmetric and Antisymmetric Parts

โ€ข If ๐‘“ ๐‘ก = ๐‘“๐‘† ๐‘ก + ๐‘“๐ด(๐‘ก) is a real-valued signal and periodic in time with fundamental period T, what are the Fourier coefficients of ๐‘“๐‘† โˆ™ and ๐‘“๐ด โˆ™ , in terms of F[k]?

6.003 Fall 2020

๐‘“ ๐‘ก = ๐‘“๐‘† ๐‘ก + ๐‘“๐ด(๐‘ก)

Any arbitrary signal ๐‘“ ๐‘ก can be written into two parts:

๐‘“๐‘† ๐‘ก is symmetric about ๐‘ก = 0, ๐‘–๐‘“ ๐‘“๐‘† ๐‘ก = ๐‘“๐‘† โˆ’๐‘ก for all t.

๐‘“๐ด ๐‘ก is antisymmetric about ๐‘ก = 0, ๐‘–๐‘“ ๐‘“๐ด ๐‘ก = โˆ’๐‘“๐‘† โˆ’๐‘ก for all t.

๐‘“๐‘† ๐‘ก =๐‘“ ๐‘ก + ๐‘“(โˆ’๐‘ก)

2๐‘“๐ด ๐‘ก =

๐‘“ ๐‘ก โˆ’ ๐‘“(โˆ’๐‘ก)

2

Real-valued periodic signal

6.003 Fall 2020

๐น[๐‘˜] =1

๐‘‡เถฑ๐‘‡

๐‘“(๐‘ก)๐‘’โˆ’๐‘—2๐œ‹๐‘˜๐‘ก๐‘‡ ๐‘‘๐‘ก

If ๐‘“ ๐‘ก is real valued periodic signal:

๐น[โˆ’๐‘˜] =1

๐‘‡เถฑ๐‘‡

๐‘“(๐‘ก)๐‘’๐‘—2๐œ‹๐‘˜๐‘ก๐‘‡ ๐‘‘๐‘ก

๐นโˆ—[โˆ’๐‘˜] =1

๐‘‡เถฑ๐‘‡

๐‘“(๐‘ก)๐‘’โˆ’๐‘—2๐œ‹๐‘˜๐‘ก๐‘‡ ๐‘‘๐‘ก

If ๐‘“ ๐‘ก is real valued periodic signal, ๐น ๐‘˜ = ๐นโˆ—[โˆ’๐‘˜]

= ๐น[๐‘˜]

Symmetric and Antisymmetric Parts

If ๐‘“ ๐‘ก is real valued periodic signal, ๐น ๐‘˜ = ๐นโˆ—[โˆ’๐‘˜]

๐‘“๐‘† ๐‘ก =๐‘“ ๐‘ก + ๐‘“(โˆ’๐‘ก)

2

๐ฟ๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘ก๐‘ฆ๐น๐‘† ๐‘˜ =

๐น ๐‘˜ + ๐น โˆ’๐‘˜

2=๐น ๐‘˜ + ๐นโˆ— ๐‘˜

2=2๐‘…๐‘’(๐น ๐‘˜ )

2= ๐‘…๐‘’(๐น ๐‘˜ )

๐‘“๐ด ๐‘ก =๐‘“ ๐‘ก โˆ’ ๐‘“(โˆ’๐‘ก)

2

๐ฟ๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘ก๐‘ฆ๐น๐ด ๐‘˜ =

๐น ๐‘˜ โˆ’ ๐น โˆ’๐‘˜

2=๐น ๐‘˜ โˆ’ ๐นโˆ— ๐‘˜

2=2๐‘— โˆ™ ๐ผ๐‘š(๐น ๐‘˜ )

2= ๐‘— โˆ™ ๐ผ๐‘š(๐น ๐‘˜ )

The real part of F[k] comes from the symmetric part of the signal, the imaginary part of F k comes from the antisymmetric part of the signal

โ€ข If ๐‘“ ๐‘ก = ๐‘“๐‘† ๐‘ก + ๐‘“๐ด(๐‘ก) is a real valued signal and periodic in time with fundamental period T, what are the Fourier coefficients of ๐‘“๐‘† โˆ™ and ๐‘“๐ด โˆ™ , in terms of F[k]?

Previously(lecture 2B)

Let X[k] represent the Fourier series coefficients of the following signal:

T=1, ๐œ”0 =2๐œ‹

๐‘‡= 2๐œ‹

๐‘‹[๐‘˜] = แ‰

0, ๐‘˜ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›1

๐‘—๐œ‹๐‘˜, ๐‘˜ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

๐‘ฅ ๐‘ก is antisymmetric around t=0, thus its Fourier Series coefficients are purely imaginary

Symmetric and Antisymmetric Parts in Trig form CTFS

๐‘“๐‘† ๐‘ก =๐‘“ ๐‘ก + ๐‘“(โˆ’๐‘ก)

2๐‘“๐ด ๐‘ก =

๐‘“ ๐‘ก โˆ’ ๐‘“(โˆ’๐‘ก)

2

The symmetric part shows up in the ๐‘๐‘˜ coefficients, and the antisymmetric part shows up in the ๐‘‘๐‘˜ coefficients.

โ€ข ๐‘๐‘˜โ€™s (cosines) alone can only represent symmetric functions.

โ€ข ๐‘‘๐‘˜ โ€™s (sines) alone can only represent antisymmetric functions

sin(๐‘ฅ) cos(๐‘ฅ)

Previously(Lecture 2A)โ€ข Find the Fourier series coefficients for the following square wave:

If without ๐‘0 =1

2โ€œDCโ€ part, ๐‘“ ๐‘ก is antisymmetric around t=0, thus only having non-zero ๐‘‘๐‘˜ โ€™s

Time shifts in CTFS

6.003 Fall 2020

The time shifting in f(t) is carried to the underlying basis functions of it Fourier expansion.

Half-period shift inverts ๐‘๐‘˜ terms if k is odd. It has no effect if k is even.

๐‘” ๐‘ก =

๐‘” ๐‘ก = ฯƒ๐‘˜=0โˆž ๐‘๐‘˜

โ€ฒ cos(๐‘˜๐œ”0๐‘ก) + ฯƒ๐‘˜=1โˆž ๐‘‘๐‘˜

โ€ฒ sin(๐‘˜๐œ”0๐‘ก)

Half period shift

6.003 Fall 2020

The time shifting in f(t) is carried to the underlying basis functions of it Fourier expansion.

Half-period shift inverts ๐‘‘๐‘˜ terms if and only if k is odd.

๐‘” ๐‘ก =

๐‘” ๐‘ก = ฯƒ๐‘˜=0โˆž ๐‘๐‘˜

โ€ฒ cos(๐‘˜๐œ”0๐‘ก) + ฯƒ๐‘˜=1โˆž ๐‘‘๐‘˜

โ€ฒ sin(๐‘˜๐œ”0๐‘ก)

Quarter period shift?

Shifting by T /4 becomes more complicated.

โ„Ž ๐‘ก =

โ„Ž ๐‘ก = ฯƒ๐‘˜=0โˆž ๐‘๐‘˜

โ€ฒโ€ฒcos(๐‘˜๐œ”0๐‘ก) + ฯƒ๐‘˜=1โˆž ๐‘‘๐‘˜

โ€ฒโ€ฒsin(๐‘˜๐œ”0๐‘ก)

Quarter period shift?

6.003 Fall 2020

โ„Ž ๐‘ก =

โ„Ž ๐‘ก = ฯƒ๐‘˜=0โˆž ๐‘๐‘˜

โ€ฒโ€ฒcos(๐‘˜๐œ”0๐‘ก) + ฯƒ๐‘˜=1โˆž ๐‘‘๐‘˜

โ€ฒโ€ฒsin(๐‘˜๐œ”0๐‘ก)

Summary of shift result

6.003 Fall 2020

Other shifts will be even more complicated!

4โ„Ž ๐‘ก

Properties of CTFS: Time Shiftโ€ข Consider ๐‘ฆ ๐‘ก = ๐‘ฅ ๐‘ก โˆ’ ๐‘ก0 , where ๐‘ฅ is periodic in ๐‘‡. What are the

CTFS coefficients ๐‘Œ[๐‘˜], in terms of ๐‘‹[๐‘˜]?

๐‘™๐‘’๐‘ก ๐‘ข = ๐‘ก โˆ’ ๐‘ก0, then ๐‘ก = ๐‘ข + ๐‘ก0,d๐‘ก = ๐‘‘๐‘ข

Each coefficient ๐‘Œ ๐‘˜ in the series for ๐‘ฆ(๐‘ก) is a constant ๐‘’โˆ’๐‘—๐‘˜๐œ”0๐œ times the corresponding coefficient ๐‘‹[๐‘˜] in the series for ๐‘ฅ(๐‘ก).

Properties of CTFS: Time Derivative

โ€ข Consider ๐‘ฆ ๐‘ก =๐‘‘

๐‘‘๐‘ก๐‘ฅ ๐‘ก , where ๐‘ฅ ๐‘ก and ๐‘ฆ ๐‘ก are periodic in ๐‘‡. What

are the CTFS coefficients ๐‘Œ[๐‘˜], in terms of ๐‘‹[๐‘˜]?

6.003 Fall 2020

Start with the synthesis equation:

Then, from the definition of y(ยท), we have:

Properties of CTFS: brief summary

โ€ข Certain operations in the time domain have predictable effects in the frequency domain.

These can help us find the Fourier coefficients of a new signal without explicitly integrating!

If ๐‘“ ๐‘ก is real valued periodic signal, ๐น ๐‘˜ = ๐นโˆ—[โˆ’๐‘˜]

The real part of F[k] comes from the symmetric part of the signal, the imaginary part of F k comes from the antisymmetric part of the signal

If ๐‘ฆ ๐‘ก = ๐‘ฅ โˆ’๐‘ก , ๐‘Œ[๐‘˜] = ๐‘‹[โˆ’๐‘˜]

Check yourself!

Let ๐‘Œ[๐‘˜] represent the Fourier series coefficients of the following signal:

6.003 Fall 2020

Check yourself!What is the relationship between the two following signals?

6.003 Fall 2020

๐‘‹[๐‘˜] = แ‰

0, ๐‘˜ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›1

๐‘—๐œ‹๐‘˜, ๐‘˜ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

Check yourself!The triangle waveform is the integral of the square wave.

๐‘ฅ ๐‘ก =๐‘‘

๐‘‘๐‘ก๐‘ฆ ๐‘ก

๐‘‹ ๐‘˜ = ๐‘—2๐œ‹๐‘˜

๐‘‡๐‘Œ ๐‘˜ , ๐‘‡ = 1

๐‘‹[๐‘˜] = แ‰

0, ๐‘˜ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›1

๐‘—๐œ‹๐‘˜, ๐‘˜ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

๐‘Œ ๐‘˜ =1

๐‘—2๐œ‹๐‘˜๐‘‹ ๐‘˜

๐‘ฆ ๐‘ก is symmetric around t=0, thus its Fourier Series coefficients are purely real

= แ‰0, ๐‘˜ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›

โˆ’1

2๐œ‹2๐‘˜2, ๐‘˜ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

Check yourself!

Let ๐‘Œ[๐‘˜] represent the Fourier series coefficients of the following signal:

6.003 Fall 2020

๐‘Œ[๐‘˜] = แ‰0, ๐‘˜ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›

โˆ’1

2๐œ‹2๐‘˜2, ๐‘˜ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

Summary

โ€ข Various properties of the CTFS, making it easier to find the Fourier coefficients of a new signal

โ€ข The Complex Exponential Form is much easier in math, will focus on this in the later part of the course

6.003 Fall 2020

top related