3d printing: its economic and technical rational

Post on 19-Oct-2014

4.714 Views

Category:

Business

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Master's students use ideas from my (Jeff Funk) forthcoming book (Technology Change and the Rise of New Industries) to analyze the technical and economic feasibility of 3D additive printing. Manufacturing parts using additive fabrication techniques can enable on-demand local manufacturing and thus can eliminate complex value chains. See my other slides for details on concepts, methodology, and other new industries..

TRANSCRIPT

MT5009

ANALYZING HI-TECHNOLOGY OPPORTUNITIES

Ch K K k ClChew Kuan Kok, Clement          (A0076995E)Espiritu Maricris Tolentino (A0076910E)

Le Quang Dung (A0077075Y)

Myo Kyaw Thu (A0013741U)Myo Kyaw Thu (A0013741U)Wong Yong Jin, Melvin               (A0076844U)

1

2D printing 3D images?

No color you like?

Dented bumper?2

Lets watch a video …

3

4

d i 3 i i Introduction to 3D Printing

Technology Paradigm

Value Propositions Value Propositions

Current 3D Printing Technologies

Cost and Performance Cost and Performance

Comparison of 3D Printing Technologies

Why 3D Printing Will Get Better Why 3D Printing Will Get Better

Potentials for Improvement – Technology Roadmap

Entrepreneurial Opportunities – Opportunities of Applications 

Potential New Businesses

3D Printer Market at a Glance

Conclusion

5

3D printing is a form of additivemanufacturing in which components

f b i d i ddi i f hiare fabricated in an additive fashionby adding successive layers ofmaterial togethermaterial together

3D Printing3D Printing=Additive ManufacturingAdditive Manufacturing

6

Conventional Manufacturing Technology

3D PrintingTechnology

• Mass‐production • Allow customization andon‐demand production

• Require tools to produce parts (hardware driven)

• Directly manufacture from CAD model (software driven)p ( ) ( )

• Subtractive manufacturing • Additive manufacturing

7

Fabrication on demand Shorter product development time due to rapid

prototyping

Less reliance on logisticsTimberland prototype

Less reliance on logistics

Mass customisationCost : $1200Time required :1 week

$35Mass customisation Caters to each individual’s wants and needs instead

of mass production and consumption

Time required :1 week90 mins

of mass production and consumption

8

Opens up new ibili i i d ipossibilities in design

Complex geometries Complex geometries

Eliminate constraints of conventionalconventional manufacturing  processes

Customised geometry and Customised geometry and parts

Avoids assembly issues Avoids assembly issues

9

ff d h l Cost‐efficient in producing parts with complex geometries and reduces waste

€770

€380

Material Subtracted by Machining to Produce Feature/Part

10Source: Dr Hopkinson, Loughborough UniversityMaterial Added by 3D Printing to Produce Feature/Part

Material Subtracted by Machining to Produce Feature/Part

Lowers barriers to entry for new businessesf 

otal cost o

frodu

ction

Cost of conventionally manufactured parts

To p

ng p

Cost of part produced byost o

f too

lin

Cost of part produced by 3D Printing

Break‐even Production

Co

11

Source: Terry Wohler’s Report 2006

Illustration showing the total cost of production usingconventional manufacturing and additive fabrication

Break even volume

Production volume

Promotes Innovation

Communicate design ideas better through physical modelsmodels

Allows user‐centered i ti t t k linnovation to take place‐ Democratizing Innovation

12

Product Company Improvements

ICON Aircraft + Gained two to three weeks on the schedule+ Saved $2 000+ Saved $2,000 per part for tooling

Autodesk University Method  Cost Estimate  Time Estimate Machining  $900,00 9 monthsFDM (3D Printing)  $25,000 1.5 months( g)Savings  $875,000 

(97%) 7.5 months (83%) 

Akaishi (Shizuoka, Japan) Method  Cost Estimate  Time Estimate Traditional Prototyping 

JPY 37,500 10 days

FDM Prototyping  JPY  10,000 1 day(3D Printing) Savings  $27,500 

(73%) 9 days (90%) 

13

Stereolithography (SLA)

Process using photosensitivephotosensitive resins cured by a laser that traces the parts cross sectional geometry layer by layer. 

14

Selective Laser Sintering (SLS)

Process using a CO2 laser to sinter orlaser to sinter or fuse a powder material. The laser traces the parts cross sectional geometry layer by layer. 

15

Improvement in Components (SLA/SLS)

Laser system› Improvement in speed of 

curing/fusing process.curing/fusing process.› Higher intensity of the laser.› Smaller laser beam spot size.› D li i t f l› Decline in cost of laser 

technology.

Scanning system› Improvement  in optical scanning 

system (Digital Mirror System).› Improvement in path scanning p p g

algorithm.

16

Three‐Dimensional Printing (3DP)

Introduction: Ink‐jet based process that prints 

the parts cross sectional geometry on layers of powder spread on top of each other.

Improvement in components: Inkjet print heads

› Improvement in the droplet› Improvement in the droplet formation chamber.

› Multiple nozzles to enable multi‐material deposition.p

17

Fused Deposition Modeling (FDM)

Introduction: Process using molten plastics or g p

wax extruded by a nozzle that traces the parts cross sectional geometry layer by layer. g y y y y

Improvement in components: Extrusion nozzle:

› Improvement in size of the tip› Improvement in feed rate of 

material

18

19

Source: Dr Hopkinson, Loughborough University

Illustration showing the break-even cost analysis of a small but complicated part

3

4

1

2

3

0

1

SLA SLS FDM 3DP

Best to produce fine feature details like hearing aid 

d j l

Best for making small lots of 

complex, durable, hard‐to‐

Best for direct manufacture of 

structural components; Direct 

Best for functional testing, Rapid 

tooling, Prototyping, high 

and jewelrymanufacture parts

p ;metal coasting

yp g, gheat applications

20

Laser system Laser system Scanning system Print head Print head Extrusion nozzle Materials: Emergence of more types of material Materials: Emergence of more types of material which can be used. Application of Nanotechnology.gy

3D CAD software: Improvement in speed, accuracy and user interface.

21

Technology improvements lead to cost reduction Technology improvements lead to cost reductionof components and material.

Open source community: Shared knowledge and Open source community: Shared knowledge andexperiences (e.g. RepRap printers).

As 3D Printing is getting better, demand for 3Dg g gprinting application increases significantly.“Increase in demand will lead to reductions in

t d i t i f ”cost and improvements in performance” ‐Christensen’s theory of disruptive innovation.

High end vs Low end High‐end vs. Low‐end.

22

23

Opportunities of Applications 

Potential New Businesses

24

“Design & Use” instead of “Buy & Use” 25

Artificial boneDental solutionProsthetics

Limb

P i ti g B d Pa tReplicate human anatomy easily

Printing Body Parts

26

1Kg = $3000 Fuel/ yr

COST SAVINGCOST SAVING

A380 landing-gear section

Titanium extraction

Save Energy 25X*

Source: www.airbus.com

27

Wind Tunnel Testing

Enhance Innovation & Creativity28

CreationImagination 29DIY

US Military has projects to make spare parts for Mili i f i b l iMilitary equipments for in‐battle repairs

Time saved

30

Artist creates a design but not the actual piece

Some form of Arts will be democratized if not all

M Museum, Belgium

31

Printing shops (Fab Lab)

I want an I want an iPad cover like yours, but I like it

Printer Leasing

3D‐Printing solutions for self‐service customer kiosks

but I like it thicker, and 

pink 

service customer kiosks

On‐line printing services

32

Self‐help books

3D software learning institutes

Web‐based trainings

Website to showcase the model files (like flickr)model files (like flickr)

Website where we can buy and sell 3D‐model files (like getty images, iTunes)

33

Computers More powerful computers  Higher resolution graphics Faster data transferring techniques [e.g USB3.0, HDMI, etc… ??]

3 f 3D CAD software 3D printer‐centric solid modeling software  Easy to use interface d l f ( ) Incorporated analysis software (e.g FEA, etc…)

Lasers I t i l d t “ ” th t i l i k Improvement in lasers used to “cure” the materials quicker

Material I d d t i l t t th d f 3D i t Improved and new materials to cater the needs of 3D printers

(e.g Nano‐materials for better surface finish and strength)

34

3D Printer Manufacturers

3D Printer Users

35

Figure 1: Growth of 3D-Printing industry Figure 2: Countries that have adopted the 3D-printing technology

*in millions of dollars.2009 and 2010 are forecast

products

services

*cumulative systems installed by country through the end of 2008

Source: Terry Wohler Report 2010

p oducts

36

Price› $ 10,000 ‐ $500,000 Range› Low end machines with limited applicable materials › Volume Vs Price (chicken and egg problem)

Current Design Methodologies› Heavily invested in existing technologies and tools› Most design software are developed based on existing manufacturing 

h l itechnologies› Design Engineers / Designers are so used to with the existing  manufacturing 

technologies / constraints.› Need to Un‐learn and Re‐Learn› Need to Un learn and Re Learn

Still lack of common Industrial Standards for 3D printing technologiestechnologies› Creates less confident on the technology by potential users

37

What’s next for 3D‐printers? Success of the 3D printers lies on:› Further improvements in supporting technologies and 

components› Reduction in cost of 3D printers and consumables

C lid ti d ti t d d› Consolidation and creating standards› Innovative and feasible business models

Key to manufacturing will change from Economies y g gof Scale to Economies of Knowledge

Mass production to mass customized products Greener production/consumption Good ideas can be shared even more rapidly with 

3D i ti3D printing Barriers to entry for new businesses will be lower

38

Is 3D printing going to disrupt

the existing

What would we need f t

gtechnologies

manufacturers for if there is machine that can print a can print a

machine

ill b dWhat will

Will everybody own 3D printers

one day

happen to the supply chain of

the fmanufacturing

industry

39

… closing video.

40

1. ADVANCES IN RAPID PROTOTYPING D18E © 2008 Frost & Sullivan2. 3D Printer Benchmark: North American Edition, T. A. Grimm & Associates, Inc., June 20103. World Rapid Prototyping Equipment Markets N191‐30, © 2007 Frost & Sullivan4. EMERGING INDUSTRIAL MANUFACTURING TECHNOLOGY‐‐ RAPID PROTOTYPING D273© 2004 Frost & Sullivan5. FACTORY@HOMETHE EMERGING ECONOMY OF PERSONAL MANUFACTURING, OVERVIEW AND RECOMMENDATIONSA (HOD

LIPSON, Cornell University MELBA KURMAN, Triple Helix innovation), report commissioned by the US Office of Science and Technology Policy, December 2010

6. The Wholer Report 2003, Terry Wholer Copyright 20037. The Wholer Report 2006, Terry Wholer Copyright 20067. The Wholer Report 2006, Terry Wholer Copyright 20068. The Wholer Report 2010, Terry Wholer Copyright 20109. Roadmap for Additive Manufacturing, Identifying the Future of Freeform Processing, The University of Texas at Austin Laboratory

for Freeform Fabrication Advanced Manufacturing Center, Copyright 200910. Worldwide Trends in Additive Manufacturing, Terry Wohlers, RapidTech 2009: US-TURKEY Workshop on Rapid Technologies

“Th i t i d t i l d i b th d l t f th di i l i ti t h l f t h i l ti ”11. “The impact on industrial design by the development of three‐dimensional printing technology from a technical perspective”, Xing Liu, Xiaojiang Zhou, Hangzhou Dianzi University, Copyright 2010

12. Fused Deposition Modeling  http://www.time‐compression.com/articles/html/fused_deposition.html

13. 3D printing technique applied to rapid casting by Elena Bassoli and Andrea Gatto Department of Mechanical and Civil Engineering, University of Modena and Reggio Emilia, Modena, Italy

14. Direct Digital Manufacturing: Advantages & Consideration By Scott Crump, CEO, Stratasys, Inc.15. Three Dimensional Printing by Professor Emanuel Sachs, Mechanical Engineering Department , MIT16. Additive Manufacturing for mass customization by Phil Reeves, Chris Tuck, Richard Hague , Additive Manufacturing Research

Group Wolfson School of Mechanical and Manufacturing Engineering Loughborough University17. Fab@home. http://www.fabathome.org@ p // g

18. Reprap. http://www.reprap.org

19. Objet Technologies. http://www.objet.com

41

top related