15.1 motion of an object attached to a spring 15.1 hooke’s law 15.2

Post on 02-Jan-2016

219 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

15.1 Motion of an Object Attachedto a Spring

15.1 Hooke’s law

15.2 a

x=−

kmx

F

s=− kx

15.2 The Particle in Simple Harmonic Motion

15.3

15.4

15.5

15.6 Position versus time for an x(t) = A cos (t +

object in simple harmonic

motion

15.7

d 2x

dt 2=−

kmx

2 k

m =

d 2x

dt 2=− 2x

d 2x

dt 2=−A d

dtsin t +φ( ) =− 2A cos t +φ( )

15.2 The Particle in Simple Harmonic Motion, cont.

15.8

15.9

15.10

15.11

15.12

15.13 Period

22 ƒ

T

π π= =

T =

mk

=2π

2T

π

= =

2T

π

=

=

km

dxdt

=−Addtcos t +φ( ) =−A sin t +φ( )

15.2 The Particle in Simple Harmonic Motion, cont.

15.14 Frequency

15.15 Velocity of an object in simple harmonic motion

15.16 Acceleration of an object in simple harmonic motion

15.17 Maximum magnitudes of velocity and acceleration insimple harmonic motion

15.18

ƒ =

1T

=12π

km

v =

dxdt

=−Asin( t+φ)

a =

d2xdt2

=− 2Acos( t + φ)

v

max=A=

km

A

a

max= 2A=

kmA

15.3 Energy of the SimpleHarmonic Oscillator

15.19 Kinetic energy of a simple K = ½ mv 2 = ½ m2 A2 sin2 (t + ) harmonic oscillator

15.20 Potential energy of a U = ½ kx 2 = ½ kA2 cos2 (t + )simple harmonic oscillator

15.21 Total energy of a simple E = ½ kA 2

harmonic oscillator

15.22 Velocity as a function of

position for a simple harmonic

oscillator v =±

km

A2 −x2( ) =± 2 A2 −x2

15.4 Comparing Simple Harmonic Motionwith Uniform Circular Motion

15.23 x(t) = A cos (t + )

15.5 The Pendulum

15.24

15.25

15.26 Period of a simple

pendulum

15.27

15.28 Period of a physical

pendulum

d 2θdt2

=−gLθ

g

L =

22

LT

g

π π

= =

22

2

d mgd

dt I

θ θ θ⎛ ⎞=− =−⎜ ⎟⎝ ⎠

22

IT

mgd

π π

= =

15.5 The Pendulum, cont.

15.29

15.30 Period of a torsional

pendulum

d 2θdt2

=−κIθ

2I

T πκ

=

15.6 Damped Oscillations

15.31

15.32

15.33

2

2

k b

m m ⎛ ⎞= −⎜ ⎟

⎝ ⎠

x =Ae−b 2m( )t cos (t+φ)

−kx−b

dxdt

=md2xdt2

15.7 Forced Oscillations

15.34

15.35

15.36 Amplitude of a driven

oscillator

( )

0

222 2

0

FmA

bmω

ω ω

=⎛ ⎞− + ⎜ ⎟⎝ ⎠

F∑ =ma → F0 sin t − b

dxdt

−kx=md2xdt2

x = A cos t+φ( )

top related