15.1 motion of an object attached to a spring 15.1 hooke’s law 15.2

10
15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2 a x =− k m x F s =− kx

Upload: harry-beasley

Post on 02-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.1 Motion of an Object Attachedto a Spring

15.1 Hooke’s law

15.2 a

x=−

kmx

F

s=− kx

Page 2: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.2 The Particle in Simple Harmonic Motion

15.3

15.4

15.5

15.6 Position versus time for an x(t) = A cos (t +

object in simple harmonic

motion

15.7

d 2x

dt 2=−

kmx

2 k

m =

d 2x

dt 2=− 2x

d 2x

dt 2=−A d

dtsin t +φ( ) =− 2A cos t +φ( )

Page 3: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.2 The Particle in Simple Harmonic Motion, cont.

15.8

15.9

15.10

15.11

15.12

15.13 Period

22 ƒ

T

π π= =

T =

mk

=2π

2T

π

= =

2T

π

=

=

km

dxdt

=−Addtcos t +φ( ) =−A sin t +φ( )

Page 4: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.2 The Particle in Simple Harmonic Motion, cont.

15.14 Frequency

15.15 Velocity of an object in simple harmonic motion

15.16 Acceleration of an object in simple harmonic motion

15.17 Maximum magnitudes of velocity and acceleration insimple harmonic motion

15.18

ƒ =

1T

=12π

km

v =

dxdt

=−Asin( t+φ)

a =

d2xdt2

=− 2Acos( t + φ)

v

max=A=

km

A

a

max= 2A=

kmA

Page 5: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.3 Energy of the SimpleHarmonic Oscillator

15.19 Kinetic energy of a simple K = ½ mv 2 = ½ m2 A2 sin2 (t + ) harmonic oscillator

15.20 Potential energy of a U = ½ kx 2 = ½ kA2 cos2 (t + )simple harmonic oscillator

15.21 Total energy of a simple E = ½ kA 2

harmonic oscillator

15.22 Velocity as a function of

position for a simple harmonic

oscillator v =±

km

A2 −x2( ) =± 2 A2 −x2

Page 6: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.4 Comparing Simple Harmonic Motionwith Uniform Circular Motion

15.23 x(t) = A cos (t + )

Page 7: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.5 The Pendulum

15.24

15.25

15.26 Period of a simple

pendulum

15.27

15.28 Period of a physical

pendulum

d 2θdt2

=−gLθ

g

L =

22

LT

g

π π

= =

22

2

d mgd

dt I

θ θ θ⎛ ⎞=− =−⎜ ⎟⎝ ⎠

22

IT

mgd

π π

= =

Page 8: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.5 The Pendulum, cont.

15.29

15.30 Period of a torsional

pendulum

d 2θdt2

=−κIθ

2I

T πκ

=

Page 9: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.6 Damped Oscillations

15.31

15.32

15.33

2

2

k b

m m ⎛ ⎞= −⎜ ⎟

⎝ ⎠

x =Ae−b 2m( )t cos (t+φ)

−kx−b

dxdt

=md2xdt2

Page 10: 15.1 Motion of an Object Attached to a Spring 15.1 Hooke’s law 15.2

15.7 Forced Oscillations

15.34

15.35

15.36 Amplitude of a driven

oscillator

( )

0

222 2

0

FmA

bmω

ω ω

=⎛ ⎞− + ⎜ ⎟⎝ ⎠

F∑ =ma → F0 sin t − b

dxdt

−kx=md2xdt2

x = A cos t+φ( )