07-08. copper smelting - cdn-edunex.itb.ac.id

Post on 23-Dec-2021

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

07-08. Copper Smelting

Zulfiadi Zulhan

Taufiq Hidayat

Imam Santoso

Department of Metallurgical Engineering

Faculty of Mining and Petroleum Engineering

Bandung Institute of Technology

INDONESIA

MG3111 Pyrometallurgy

October 2021

2Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Course Content

1. Introduction

2. Refractory

3. Slag

4. Material Preparation: Aglomeration, Drying, Calcination, Roasting

5. Carbo- / Aluminothermic (Metalothermic)

6. Smelting, Refining

7. Pyrometallurgy of Copper Production I

8. Pyrometallurgy of Copper Production II

9. Mid Exam

10. Pyrometallurgy of Zinc and Lead Productions

11. Pyrometallurgy of Tin Production

12. Pyrometallurgy of Nickel Production I

13. Pyrometallurgy of Nickel Production II

14. Production of Aluminium

15. Production of Magnesium and Titanium

16. Final Exam

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 3

Copper Properties

Why Copper is widely used?29

CuCopper

63.546

https://www.visualcapitalist.com/visualizing-coppers-role-in-the-transition-to-clean-energy/

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 4

Copper Properties

29

CuCopper

63.546

https://www.visualcapitalist.com/how-much-copper-is-in-an-electric-vehicle/

Why Copper is widely used?

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 5

Uses of Copper

Cables for home, office

and industrial usesPrinted copper circuit board

Heat sinks for motherboard Heat exchanger

A. Leibbrandt, “Civilizations and Copper”, 2001

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 6

Uses of Copper

Copper Development Association (2010)

0

5

10

15

20

25

Ap

pli

ca

tio

n (

%)

It’s electrical conductivity, thermal conductivity and

corrosion resistance are its most exploited properties.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 7

Copper Resources & Reserves

ICSG copper market forecast 2015/2016

▪ Resources = Natural occurrence of material in earth’s crust for which there is reasonable

prospect for current or eventual economic extraction

▪ Reserves = Part of a measured or indicated resource for which current economic

extraction has been demonstrated

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 8

Copper Production & Consumption

ICSG copper market forecast 2015/2016

Refined Copper Production

▪ In 2016, world refined copper

production reached 23.2 million ton Cu.

▪ 36.4% was produced in China

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 9

Copper Production & Consumption

ICSG copper market forecast 2015/2016

Refined Copper Consumption

▪ In 2016, world refined copper

consumption was 23.3 Million

ton Cu.

▪ Almost half of the world refined

copper was consumed in China

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 10

Copper in Nature

o The concentration of copper in an ore body is low. Typical copper ores contain

from 0.5% Cu (open pit mines) to 1 or 2% Cu (underground mines).

o Long-running trend shows that the grades of Cu in ores in different mines are

dropping.

https://www.visualcapitalist.com/the-looming-copper-supply-crunch/

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 11

Copper in Nature

o Copper is most commonly present in the earth’s crust as copper-

iron-sulfide and copper sulfide minerals, e.g. chalcopyrite

(CuFeS2), bornite (Cu5FeS4) and chalcocite (Cu2S).

o About 80% of the world’s copper-from-ore originates in Cu-Fe-S

ores.

o Cu-Fe-S minerals are not easily dissolved by aqueous solutions,

so the vast majority of copper extraction from these minerals is

pyrometallurgical.

Cu2S: ChalcociteCuS : Covellite Cu5FeS4:BorniteCuFeS2: Chalcopyrite

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 12

Copper in Nature

o Copper minerals contains impurities, such as:

o Cu12As4S13 : Tennantite

o FeS2 : Pyrite

o FeAsS : Arsenopyrite

o (Fe, Ni)9S8, … : Pentlandite

o SiO2 : Quartz

o Al2O3 : Alumina

o CaO : Lime

o MgO : Periclase

o It can also contains trace elements which can be valuable, such

as: Au and Ag.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 13

Copper Making Principles

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 14

Basic Reactions in Cu Production

CuFeS2

1) Oxidation of S into gas S+O2 → SO2 (gas)

2) oxidation of FeS → FeO / Fe3O4

3) conversion of Cu2S → Cu (liquid)

then to sulphuric acid H2SO4

O2O2

Fluxing with SiO2

Cu2O-FeO-Fe2O3-SiO2 slag

Side reaction – oxidation of Cu into slag: 2Cu(metal/matte)+0.5O2(g) → Cu2O(slag)

Crystal magnetite Fe3O4 barrier

E. Jak, Thermodynamic Principle of Pyrometallurgy of Copper, 2019

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 15

Steps in Cu Production

1. Beneficiation process → to liberate

and increase content of valuable

minerals to produce concentrate (20-

30%Cu).

2. Smelting process → to oxidize S

and Fe from the concentrate to

produce a Cu-enriched molten

sulfide phase (matte) (50-70%Cu).

3. Converting process → to remove

Fe and S from the matte to produce

crude molten copper (99% Cu).

4. Refining process → to remove S

and O from the crude molten copper.

5. Further processes →

Electrorefining, melting, and

fabrication.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 16

Smelting Process

Matte smelting oxidizes and melts flotation concentrate in a

large, hot furnace (~1250°C) .

The objective of the smelting is to oxidize S and Fe from

the Cu-Fe-S concentrate to produce a Cu-enriched molten

sulfide phase (matte). The oxidant is almost always

oxygen-enriched air.

CuFeS2(s) + (0.5+1.5x)O2(g) + ySiO2(s) →

0.5Cu2S–(1-x)FeS(l) + x"FeO"–ySiO2(l) + (0.5+x)SO2(g)

Cu2S(l) + 1.5O2(g) = Cu2O (l) + SO2(g)

Main reaction:

Side reaction:

Exothermic reaction!!

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 17

Smelting Process

Gas/solid, gas/liquid & liquid/liquid contacting mechanisms -

FeS

H2O

SiO2 Al2O3

CuFeS2

BLEND(Concentrate + Flux)

Cu2S

Cu2S-xFeS

MATTE

SO2

O2

N2

GASESH2O

Heat

AIR

(O2 , N2)

Flux

(SiO2 )

OXYGENFeO-ySiO2

Fe3O4

SLAGCu2O, Al2O3

Cu2S

Matte : Sulfide-rich melt

Slag : Oxide-rich melt / Solution of molten oxides

Flux : Additive to control the physico-chemical properties of slag

E. Jak, Thermodynamic Principle of Pyrometallurgy of Copper, 2019

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 18

Smelting Process

CuFeS2(s) + (0.5+1.5x)O2(g) + ySiO2(s) →

0.5Cu2S–(1-x)FeS(l) + x"FeO"–ySiO2(l) + (0.5+x)SO2(g)

Concentrate Blast Flux

Matte Slag Gas

Main reaction:

Gas (S2, O2, SO2)

Liquid Cu-Fe-S matte

Solid

Liquid “FeO”-SiO2 slag

Furnace Lining

Cu2O Al2O3

CaO

MgO

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 19

Smelting Process

Scanning Electron Image of Matte-Slag Mixture

Liquid Matte

Gas

HoleHole

SiO2

SiO2

“Fe3O4”

Matte entrained

in slag

• Cu2O in slag = chemical Cu loss

• Matte entrained in slag =

physical Cu loss

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 20

Smelting Process

Compositions of industrial concentrates, fluxes, mattes, slags and

dusts for various matte-smelting processes, 2001

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 21

Converting Process

Copper converting is oxygen enriched-air or air oxidation of

the molten matte from smelting. It removes Fe and S from the

matte to produce crude (99% Cu) molten copper.

The converting takes place in two sequential stages:

(a) Slag forming stage (FeS elimination) when Fe and S are

oxidized to form FeO, Fe3O4 and SO2. Silica flux is added to

form a liquid slag. The slag-forming stage is finished when the

Fe in the matte has been lowered to about 1%. The principal

product of the slag-forming stage is impure molten Cu2S,

‘white metal’, ~1200°C.

Reaction:

Cu2S–xFeS(l) + ySiO2(s) + 1.5xO2(g) =

Cu2S(l) + x"FeO"–ySiO2(l) + xSO2(g)

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 22

Converting Process

(b) The blister copper forming stage (copper making) when

the sulfur in Cu2S is oxidized to SO2. The blister copper

product of converting is low in both S and O (0.001-0.03%S,

0.1-0.8%O).

Reaction:

Cu2S(l) + O2(g) = 2Cu(l) + SO2(g)

Copper making stage doesn't occur until the matte contains

less than about 1% Fe so that most of the Fe can be removed

from the converter (as slag) before copper production begins.

Significant oxidation of copper does not occur until the sulfur

content of the copper falls below ~0.02%. Blowing is

terminated near this sulfur end point. The resulting molten

'blister' copper (1200°C) is sent to refining.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 23

Converting Process

Reactions:

Gas (S2, O2, SO2)

Liquid Cu2S or Cu

Solid

Liquid Cu2O-“FeO”-SiO2 slag

Furnace Lining

(a) Cu2S–xFeS(l) + ySiO2(s) + 1.5xO2(g) =

Cu2S(l) + x"FeO"–ySiO2(l) + xSO2(g)

(b) Cu2S(l) + O2(g) = 2Cu(l) + SO2(g)

White metal

BlastFlux

Matte

Slag Gas

White metal Blast GasCopper

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 24

Converting Process (Slag Forming Stage)

Scanning Electron Image of White Metal-Copper Mixture

Copper

Copper

White metal

GasSlag

Fe3O4

Fe3O4

Copper

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 25

Converting Process

Compositions of converter raw materials and products, mass%

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 26

Fire Refining Process

The molten blister copper from Peirce-Smith converting

contains ~0.01% S and ~0.5% O. At these levels, the

dissolved sulfur and oxygen would combine during

solidification to form bubbles ('blisters') of SO2 in newly

cast anodes – making them weak and bumpy.

Fire refining removes sulfur and oxygen from liquid blister

copper by:

(a)air-oxidation removal of sulfur as SO2 to ~0.002% S

(b)hydrocarbon-reduction removal of oxygen as CO and

H2O(g) to ~ 0.15%

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 27

Fire Refining Process

(a) Air-oxidation removal of sulfur as SO2

Reaction:

S (in molten copper) + O2(g) = SO2(g)

The equilibrium relationship between gaseous oxygen

entering the bath and S in the bath is:

while oxygen dissolves in the copper by the reaction:

O2(g) = 2O (in molten copper)

K = pSO2 / [mass%S] x pO2

where K is about …. at 1200°C

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 28

Fire Refining Process

(b) Hydrocarbon-reduction removal of oxygen as CO and

H2O(g)

Reaction:

C(s) + O (in molten copper) = CO(g)

CO(g) + O (in molten copper) = CO2(g)

H2(g) + O (in molten copper) = H2O(g)

Removal of most of the oxygen from the molten copper is

carried out using gas or liquid hydrocarbons.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 29

Fire Refining Process

Scanning Electron Image of Blister Copper

Resin

Copper

Cu2O

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 30

Fire Refining Process

Sulphur and Oxygen Contents at Various stages of fire refining

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 31

Key Parameters of Copper Smelting

and Converting processes

- Temperature

- O2 Partial Pressure

- S 2(or SO2) Partial Pressure

- Ratio of Fe/Cu in Concentrate

- Ratio of %Cu in Matte

- Ratio of Fe/SiO2 in Slag

E. Jak, Thermodynamic Principle of Pyrometallurgy of Copper, 2019

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 32

Oxygen Partial Pressure in Copper Smelting

-273

PO2=10-5 atm

PO2=10-12 atm

Target conditions:

T = ~1200 C

Copper in metal: PO2 < 10-5 atm

Iron in slag: PO2 > 10-12 atm

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 33

Gas – Matte – Slag Equilibria

K. Itagaki: Yazawa Intern. Symp., Pyrometallurgy of Copper Short Course, TMS, San Diego (2003)

G. Roghani, Y. Takeda and K. Itagaki, Metallurgical and Materials Transactions, Aug. 2000, Vol. 31B, pp. 705-712

SmeltingConverting

PO2

PS2Change in gas composition

as reaction progresses

CuFeS2(s) + (0.5+1.5x)O2(g) + ySiO2(s) →

0.5Cu2S–(1-x)FeS(l) + x"FeO"–ySiO2(l) + (0.5+x)SO2(g)

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 34

Gas – Matte – Slag Equilibria

Change in activity of

components as reaction

progresses

Yazawa (1974)

Smelting

Converting

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 35

Gas – Matte – Slag Equilibria

Change in chemically

dissolved copper in slag

as reaction progresses

Smelting

Converting

K. Itagaki: Yazawa Intern. Symp., Pyrometallurgy of Copper Short Course, TMS, San Diego (2003)

G. Roghani, Y. Takeda and K. Itagaki, Metallurgical and Materials Transactions, Aug. 2000, Vol. 31B, pp. 705-712

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 36

Matte-Slag Separation

Basic Principle of

Matte-Slag separation

In the ternary FeS-FeO-SiO2 system,

the addition of silica to a homogeneous FeS-

FeO melt tends

to separate into matte and slag.

Similar reaction occur in the presence of Cu

CuFeS2 + O2 + SiO2 =

{Cu-Fe-S} + (FeO-SiO2) + SO2

Slag

FeO:54.8wt%

FeS:17.9wt%

SiO2:27.3wt%

matte

FeO:27.4wt%

FeS:72.4wt%

SiO2:0.16wt%

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 37

Matte Chemistry

Concentrate

Progress of Matte Composition

During smelting, iron sulfide is constantly removed. The progress of the

smelting is showed by Matte Grade (= %Cu in matte).

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 38

Matte Chemistry

Matte specific gravity is higher than that of slag and so matte

settles at the below the slag layer.

Specific gravity

ranges linearly from

3.9 for pure FeS to

5.2 for pure Cu2S. It

decreases slightly

with increasing

temperature.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 39

Slag Chemistry

Slag Compositions of Industrial Operations

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 40

Slag Chemistry

Fayalite slag

Ca-ferrite slag

Fully Liquid at 1300oC

Liquid + “FeO”

Liquid + SiO2

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 41

Slag Chemistry

1300oC

T. Hidayat, H.M. Henao, P.C. Hayes, and E. Jak,

Copper 2010, Hamburg, Germany..

Effect of PO2

on liquidus

Fully Liquid at 1300oC

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 42

Slag Chemistry

Effects of CaO on liquidus

FeO-Fe2O3-SiO2-CaO-(2.2wt%CaO -3.3wt%Al2O3) system at PO2=10-8 atm

H. M. Henao, C. Nexhip, D. P. George-Kennedy, P. Hayes, E. Jak,

Metallurgical and Materials Transactions B, publ. online Apr 2010, vol 38, article 15.

Fully liquid

Liquid + “Fe3O4”

Liquid + SiO2

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 43

Viscosity

Matte viscosities are low ~0.003 kg/m.s vs.

Typical slags viscosities are 0.2–2 poise

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 44

Optimum Condition

Optimum condition for Copper making processes is when:

• As low as possible chemically dissolved Cu in slag

• Both phases in liquid forms with good fluidity

• Sufficient time for both phases to settle into two layers (to

minimize physical Cu entrainment in slag)

Failures to control above conditions

can lead to:

• High loss of Cu into the slag

phase

• Formation of accretion / solid

deposit which can significantly

reduced furnace capacity or

interrupt furnace operationAccretion in Bottom Blown

Copper Smelting FurnaceM.Chen, et.al., International Copper Conference, Copper 2016

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 45

Copper Smelting Reactors

46Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Copper Smelting Reactors

Sohn H.Y. et. al., Treatise on Process Metallurgy: Copper Production, Elsevier, 2014

• The current industrial matte smelting technologies can be groupedinto two general types, Suspension smelting and Bath smelting.

• In the suspension process, finely sized concentrates of <100 mm sizeare injected together with a process gas into a furnace. Example:Outotec flash smelting, INCO process, Kivcet process, etc.

• In the bath smelting process, the process gas is injected into amolten bath to strongly agitate the bath and/or form bubbles.Example: Top submerged lance process, Mitsubishi process, Norandaprocess, Teniente converter process, Vanyukov process, etc.

• In both cases, a large interfacial area or turbulent movement of theliquid is created. This promotes rapid interaction of oxygencontaining gas with the condensed phase to greatly increase the rateof oxidation of iron and sulfur.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 47

Steps in Cu Production

1. Beneficiation process → to liberate

and increase content of valuable

minerals to produce concentrate (20-

30%Cu).

2. Smelting process → to oxidize S

and Fe from the concentrate to

produce a Cu-enriched molten

sulfide phase (matte) (50-70%Cu).

3. Converting process → to remove

Fe and S from the matte to produce

crude molten copper (99% Cu).

4. Refining process → to remove S

and O from the crude molten copper.

5. Further processes →

Electrorefining, melting, and

fabrication.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 48

Copper Smelting Reactors

Flash Furnace50% of world copper production

-Use very little hydrocarbon fuel (Autothermal)

-Efficient capture of strong SO2 gas

-Only accepts solid dry particles of small size

-Off gas contains a high content of dust

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 49

Copper Smelting Reactors

Process Air

Oxygen

Fuel

Molten

Bath

Feed Mix

Offgas

Offgas

System

Molten

Products

25%Cu Conc. Feed

(CuFeS2)

OFF Gas:

SO2, N2, H2O

Air + O2

-Produce high-SO2 gas with small evolution of dust

-Use very little hydrocarbon fuel (Autothermal)

-Accepts pelletized and not dried materials

Molten Products:

Slag: Fe rich (FeO.SiO2)

Matte: (CuS2 + FeS)

Cu rich 50-60% Cu

Gas/liquid

& gas/solid

& liquid/liquid

&liquid/solid

Top Submerged Lance –Isasmelt / Ausmelt

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 50

Copper Smelting Reactors

Gas/liquid

& gas/solid

Gas/liquid

& liquid/liquid

& liquid/solid

Matte

decantation

Noranda Furnace

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 51

Copper Smelting Reactors

Teniente reactor

- Feed can include scrap of different sizes

- Can produce a super high grade matte of 72 to 78% Cu

- The stirring prevents excessive deposition of magnetite

Fluxes, Reverts, Wet Concentrate

matte

Off Gas

Slag

Air + O2 and Dry concentrate injection through tuyeres

Garr gan

Gas/liquid

& liquid/liquid

& liquid/solid

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 52

Copper Smelting Reactors

Gas/liquid

& liquid/liquid

Solid/liquid

& liquid/liquid

Matte

decantation

Fangyuan - oxygen-enriched bottom-blowing smelting process

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 53

Common Features of Matte Smelting

❑ Contacting concentrate particles and silica flux with

air/oxygen.

❑ Heating the melting particles with the energy of Fe and S

oxidation and fossil fuel combustion.

❑ Allowing the partially oxidized droplets and flux to join and

later separate into matte and slag.

❑ Giving the matte droplets sufficient time to settle.

❑ Tapping the matte and slag separately through low and high-set

tap holes.

❑ Sending the matte to the converter.

❑ Sending the slag to a Cu recovery step.E. Jak, Thermodynamic Principle of Pyrometallurgy of Copper, 2019

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 54

Copper Converting Reactors

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 55

Steps in Cu Production

1. Beneficiation process → to liberate

and increase content of valuable

minerals to produce concentrate (20-

30%Cu).

2. Smelting process → to oxidize S

and Fe from the concentrate to

produce a Cu-enriched molten

sulfide phase (matte) (50-70%Cu).

3. Converting process → to remove

Fe and S from the matte to produce

crude molten copper (99% Cu).

4. Refining process → to remove S

and O from the crude molten copper.

5. Further processes →

Electrorefining, melting, and

fabrication.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 56

Copper Converting Reactors

56

Peirce-Smith Copper Converter

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 57

Copper Converting Reactors

Peirce-Smith Copper Converter

- 90% of Cu converters in the world

- Simplicity and high chemical efficiency

- Leaks of SO2 fugitive emissions into the workplace during charging and

relatively dilute SO2 gas

- It operates as a batch process, giving uneven flow of SO2 offgas into the sulfuric

acid plant,

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 58

Copper Converting Reactors

Peirce-Smith Copper Converter

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 59

Copper Converting Reactors

Noranda Continuous Submerged Tuyere Converter

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 60

Copper Converting Reactors

Kennecott – Outotec Flash Converter

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 61

Copper Converting Reactors

ISACONVERT

Process Air

Oxygen

Fuel

Molten

Bath

Feed Mix

Offgas

Offgas

System

Molten

Products

Matte

Molten Products:

Slag: Fe rich (FeO.SiO2)

Cu Blister

OFF Gas: SO2, N2, H2O

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 62

Fire Refining Reactors

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 63

Steps in Cu Production

1. Beneficiation process → to liberate

and increase content of valuable

minerals to produce concentrate (20-

30%Cu).

2. Smelting process → to oxidize S

and Fe from the concentrate to

produce a Cu-enriched molten

sulfide phase (matte) (50-70%Cu).

3. Converting process → to remove

Fe and S from the matte to produce

crude molten copper (99% Cu).

4. Refining process → to remove S

and O from the crude molten copper.

5. Further processes →

Electrorefining, melting, and

fabrication.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 64

Fire Refining Reactors

Anode Furnace

65Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 66

Fire Refining Reactors

Anode Furnace

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 67

Casting Anode

68Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Rotating Wheel

The final product of fire refining is molten copper, ~0.002% S, 0.15% 0,

1150-1200°C, ready for casting as anodes.

Most copper anodes are cast in open anode-shaped impressions on the

top of flat copper molds. Twenty to thirty such molds are placed on a large

horizontally rotating wheel.

The wheel is rotated to bring a mold under the copper stream from the

anode furnace where it rests while the anode is being poured.

When the anode impression is full, the wheel is rotated to bring a new

mold into casting position and so on. Spillage of copper between the

molds during rotation is avoided by placing one or two tiltable ladles

between the refining furnace and casting wheel.

Most casting wheels operate automatically, but with human supervision.

69Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Rotating Wheel

The newly poured anodes are cooled by spraying water on the tops and

bottoms of the molds while the wheel rotates. They are stripped from their

molds (usually by an automatic raising pin and lifting machine) after a half

rotation.

The empty molds are then sprayed with a barite-water wash to prevent

sticking of the next anode.

Casting rates are 50 to 100 tonnes of anodes per hour. The limitation is

the rate at which heat can be extracted from the solidifying / cooling

anodes. The flow of copper from the refining furnace is adjusted to match

the casting rate by rotating the taphole up or down (rotary furnace) or by

blocking or opening a tapping notch (hearth furnace).

In a few smelters, anodes are cast in pairs to speed up the casting rate.

70Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

71Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Rotating Wheel

72Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Rotating Wheel

73Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Continuous Anode Casting (Hazelett Twin Belt)

Continuous casting of anodes in a Hazelett twin-belt type caster is being used

by six smelter/refineries.

The advantages of the Hazelett system over mold-on-wheel casting are

uniformity of anode product and a high degree of mechanization / automation.

In Hazelett casting, the copper is poured at a controlled rate (30-100 tonnes

per hour) from a ladle into the gap between two moving water-cooled low-

carbon steel belts. The product is an anode-thickness continuous strip of

copper moving at 4 to 6 m/minute.

The thickness of the strip is controlled by adjusting the gap between the belts.

The width of the strip is determined by adjusting the distance between bronze

or stainless steel edge blocks which move at the same speed as the steel

belts.

74Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

75Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

76Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Electrorefining

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 77

Direct-to-blister Copper Makingand

Continuous Smelting – Converting

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 78

Steps in Cu Production

1. Beneficiation process → to liberate

and increase content of valuable

minerals to produce concentrate (20-

30%Cu).

2. Smelting process → to oxidize S

and Fe from the concentrate to

produce a Cu-enriched molten

sulfide phase (matte) (50-70%Cu).

3. Converting process → to remove

Fe and S from the matte to produce

crude molten copper (99% Cu).

4. Refining process → to remove S

and O from the crude molten copper.

5. Further processes →

Electrorefining, melting, and

fabrication.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 79

Direct-to-blister Copper Making

Cu5FeS4(concentrate) + (0.25x+2.5)O2(g) + ySiO2(s) =

(5-x)Cu(l) + 0.5x“Cu2O”–FeO–ySiO2(slag) + 4SO2(g)

Limited only for processing

concentrate with high Cu

content.

Slag from this process

contains high Cu

concentration (10-30wt%Cu),

thus slag cleaning process is

required.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 80

Continuous Smelting - Converting

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 81

Examples of Copper Plantswith Different Technologies

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 82

Aurubis (Flash Smelter)

Aurubis AG is the largest copper producer in Europe (the second largest in the

world) and the largest copper recycler worldwide. One of its smelters is located in

Hamburg, Germany. Aurubis produces more than 1,000,000 TPY of copper

cathodes and from them a variety of copper products.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 83

Mt Isa (Isa Smelter)

The copper smelter at Mt Isa has a processing capacity of 300,000 TPY. The Mt

Isa operations process approximately 6.5M TPY of ore. The project is Australia's

second-largest copper producer.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 84

Olympic Dam (Direct-to-Blister Process)

The Olympic Dam is an integrated mine, mill, smelter and refinery complex. The

smelter was commissioned in July 1988 with a capacity of 55,000 TPY copper and

90kt/a acid. It was later expanded, raising its capacity to 200,000 TPY of copper

and 4,300 TPY of uranium, plus gold and silver.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 85

PT Smelting (Mitsubishi Process)

PT Smelting was established in February 1996. Currently copper cathode

production level is over 300,000 TPY, with priority of it is sold for Indonesian

market and the rest is exported to Asian market. By-products of sulfuric acid,

granulated slag and gypsum are delivered to local market, and anode slime and

copper telluride are exported to international market.

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 86

Aurubis (Flash Smelter)

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 87

MitsubishiContinuous Smelting – Converting

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 88

Continuous Smelting - Converting

Advantageous:(a) Ability to smelt all concentrates, including CuFeS2

concentrates(b) Elimination of Peirce-Smith converting with its SO2 collection

and air infiltration difficulties(c) Continuous production of high SO2-strength offgas, albeit

from two Sources(d) Relatively simple Cu-from-slag recovery(e) Minimal materials handling.

Major advantage of the process: effectiveness in capturing SO2.two continuous strong SO2 streams (smelting and converting) arecombined to make excellent feed gas for sulfuric acid or liquid SO2

manufacture.

Absence of crane-and-ladle transport of molten material minimizesworkplace emissions.

89Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Reaktor S-Furnace

90Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Reaktor S-Furnace

1. The S (smelting) furnace blows oxygenenriched air, dried concentrates, SiO2

flux and recycles into the furnace liquidsvia vertical lances.

2. It oxidizes the Fe and S of theconcentrate to produce 65-68% Cu matteand Fe-silicate slag.

3. Its matte and slag flow together into theelectric slag-cleaning furnace.

Schlesinger M.E., King M.J., Sole K.C., Davenport W.G., Extractive Metallurgy of Copper, Elsevier, 2011

91Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Reaktor S-Furnace

• Solid fine feed and gas enter through 9 vertical lances.

• Feed and gas react to form matte-slag mixture that continuouslyoverflow into the electric slag-cleaning furnace.

• The offgas from the oxidation reactions is drawn up a large uptaketo waste heat boiler.

Goto M., Hayashi M., The Mitsubishi Continuous Process: Metallurgical Commentary, Mitsubishi Materials Corporation, 1998.Schlesinger M.E., King M.J., Sole K.C., Davenport W.G., Extractive Metallurgy of Copper, Elsevier, 2011

Naoshima Design

92Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Reaktor CL-Furnace

93Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Reaktor CL-Furnace

1. The CL (slag-cleaning) furnace separatesthe smelting furnace’s matte and slag.

2. Electrodes and electrical power are usedto keep the slag hot and fluid.

3. Its matte flows continuously to theconverting furnace.

4. Its slag (0.7-0.9% Cu) flows continuouslyto water granulation which then can be soldor stockpiled.

94Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Reaktor CL-Furnace

Goto M., Hayashi M., The Mitsubishi Continuous Process: Metallurgical Commentary, Mitsubishi Materials Corporation, 1998.Schlesinger M.E., King M.J., Sole K.C., Davenport W.G., Extractive Metallurgy of Copper, Elsevier, 2011

• The electric slag-cleaning furnace (3600 kW) is elliptical with 3 or 6graphite electrodes.

• The slag and matte approach equilibrium due to prolonged residencetimes (1-2 h) and electromagnetic stirring.

• Electricity passes through the slag to ensure that the slag is hotand fluid, and the matte droplets are efficiently settled.

Naoshima Design

95Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Reaktor C-Furnace

96Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Reaktor C-Furnace

1. The C (converting) furnace blows oxygen-enriched air, CaCO3 flux, and coolant into thematte via vertical lances.

2. It oxidizes the Fe and S in the matte toproduce molten copper. The coppercontinuously flows into one of anode furnacesfor subsequent fire-refining.

3. The slag (14% Cu) flows continuously into awater-granulation system which is thenrecycled to the smelting furnace.

97Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Reaktor C-Furnace

Goto M., Hayashi M., The Mitsubishi Continuous Process: Metallurgical Commentary, Mitsubishi Materials Corporation, 1998.Schlesinger M.E., King M.J., Sole K.C., Davenport W.G., Extractive Metallurgy of Copper, Elsevier, 2011

• The oxygen-enriched air and solid enter the furnace through 10lances.

• It also receives converter slag granules and scrap anodes.

• The offgas is drawn up a large uptake to waste heat boiler.

Naoshima Design

98Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Layout Pabrik Continuous Smelting – Converting

99Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Layout Umum Pabrik• Naoshima Smelter

2

1

4

6

7

8

109

1112

13

14

16

17 18

19

1. Unload pier 2. Concentrate storage 3. Flux storage 4. Administration office 5. Laboratory

6. Precious metal plant 7. Waste water treatment plant 8. Oxygen plants 9. Technical office

10. Concentrate storage 11. Acid plant-no.3 12. Acid plant-no.2 13. Desulphurization acid plants tail gas

14. Sea water pump 15. Refinery 16. Continuous smelter 17. Power plant 18. Blending yard 19. Stack

Goto M., Hayashi M., The Mitsubishi Continuous Process: Metallurgical Commentary, Mitsubishi Materials Corporation, 1998.

10

00

m

1900 m

15

5 3

Total Map = ~1.9 km2

Plant = ~0.5 km2

100Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Layout Umum Pabrik• Onsan Smelter

1

1. Office 2. Workshop & warehouse 3. Old smelter (Flash furnace & PS-converter) 4. New smelter

(Mitsubishi continuous smelter) 5. Old refinery 6. New refinery 7. Old acid plant & Utilities

8. New acid plant 9. Concentrate storage 10. Soccer field

2

34

5

6

7 8

10

Lee J.H., Kang S.W., Cho Y.H., Ke J.J., Expansion of Onsan Smelter, Proc. Copper 99 – Cobre 99 Int. Conf., 1999.

9

710 m

65

0 m

~0.47 km2

101Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Layout Umum Pabrik• Gresik Smelter

1. Raw Materials weighting & sampling 2. Concentrate storage 3. Flux storage 4. Administration office

5. Laboratory 6. Waste water treatment plant 7. Oxygen & power plants 8. Acid plant 9. Refinery

10. Continuous smelter 11. Water reservoir 12. Storm water pond 13. Warehouse 14. Workshop

Ajima S., Konda K., Kanamori K., Igarashi T., Muyo T., Hayashi S., Copper Smelting and Refining in Indonesia, Proc. Copper 99 – Cobre 99 Int. Conf., 1999

37

5 m

830 m

10

7 8

6

1

2 3

12

1

1194

5

13 14

~0.29 km2

102Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Layout Pabrik Continuous Smelter• Naoshima Smelter

1. Conc. dryer

2. Bag house

3. Flux receiving hopper

4. Flux bins

5. S-furnace feeding tanks

6. S-furnace

7. CL-furnace

8. C-furnace

9. Anode furnace

10. Casting wheel

11,12. Waste heat boilers

13,14. Balloon flues

15. Electrostatic precipitators

16. Discard slag granulation pit

17. Slag bin

18. C-slag granulation pit

19. C-slag dryer

20. Lumpy material conveyor

21. Spent anode conveyor

22. Pressed copper scrap conveyor

23. Control room

24. Compressor room

Mitsubishi Materials Corporation, The Mitsubishi Process Brochure, 1998.

103Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Layout Pabrik Continuous Smelter• Onsan Smelter Lee J.H., Kang S.W., Cho Y.H., Ke J.J., Expansion of Onsan Smelter, Proc. Copper 99 – Cobre 99 Int. Conf., 1999.

104Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Layout Pabrik Continuous Smelter• Gresik Smelter

Prayoga A., Smelting Furnace Melt Zone Wall Modification to Cope Higher Production Rate Operation, Proc. 1st Int. Process Metallurgy Conf., 2016

105Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Copper

concentrate

Aliran Material Pabrik

Offgas

Silica +

Limestone Offgas

Tail Gas

Dilution

Slag + Matte

Matte

C-S

lag

Sulfuric Acid

Enriched air

Offgas

Blister Copper

Limestone Reduction

Gas to

Dryer

Copper

Anode

Air (D-S)CH4 (Reduction)

CH4 (burners)Air (burners)

Ga

s fro

m D

-S

Dryer

Mitsubishi

S-Furnace

W.H.B

+ ESP

W.H.B

+ ESP

Mitsubishi

CL-Furnace

Mitsubishi

C-Furnace

Steam

Dryer

Slag

Granulation

Acid Plant

(double abs.)

Anode

Furnace

Anode scrap

Coolant

Feeding

Facility

Dry

conc.Conc.

StorageWeighing &

Sampling

Ship

Unloading

Storage

Shed

Limestone Silica Coal

Coal

SlagSlag

Granulation

Discard SlagBlower

Oxygen

Plant

Anode

CastingTank

HouseCopper Cathode

Precious

Metal

Plant

Anode

Slime

Dore Bullion

Purchased Slime

NiSO4

Electrolytic Copper

Crude Selenium

Gold

Silver

Pd/Pt Slime

Acid

Storage

Weak Acid Waste

Water

Treatment

Neutralized Sludge

Effluent

to Sea

Desulfurizing

Plant

Offgas

Gypsum

Gypsum

To Fertilizer

Company

ESPOffgas

StackBag

Filter

Pb-rich Slag

By-Product

Plant

EP DustPb Residue

Cd Sludge

Ajima S., et. al., Copper Smelting and Refining in Indonesia, Proc. Copper 99 – Cobre 99 Int. Conf., 1999Ajima S., et. al., The Distribution of Minor Elements at Naoshima, Co-products & Minor Elements in Non-Ferrous Smelting, 1995

Kang Y.C., Song I.H., Two Copper Smelting Processes at Onsan, Yazawa International Symposium, 2003Cooper, W. C. (1990), The Treatment of Copper Refinery Anode Slimes, JOM, 45–49

Leigh, A.H. (1973), Precious Metal Refining Practice, International Symposium on HydrometallurgyLudvigsson, B. M. & Larsson, S.R., (2003), Anode Slimes Treatment: The Boliden Experience, JOM, 41–44

Offgas

to Atmosphere

Note: Solid

Liquid

Gas

Fuel

Hot Air

Copper Telluride

106Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Refraktori Peleburan Tembaga

107Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Refraktori Peleburan Tembaga

Most of the refractories in the Mitsubishifurnace are fused cast and direct-bondedmagnesite chrome (MgO-Cr2O3)

108Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Refraktori Peleburan Tembaga

109Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Refraktori Peleburan Tembaga

110Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Refraktori Peleburan Tembaga

• There is a trend to apply cooling system on / in the lining systemsto perform ten to fifteen years operation with a minimum repair.

• By inserting water-cooled copper elements in the furnacebrickwork, a frozen slag on the refractory hot face will beformed. This frozen slag protects the bricks from furthererosion/corrosion by the liquid slag.

Heat Input

Slag bathFreeze

liningReactor

wallCooling

medium

Heat removal

CastableCopper fingers

Backing plateCoolant

111Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Refraktori Peleburan Tembaga

S-Furnace

Prayoga A., Smelting Furnace Melt Zone Wall Modification to Cope Higher Production Rate Operation, Proc. 1st Int. Process Metallurgy Conf., 2016Used initial wall New modified wall Used modified wall

112Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Refraktori Peleburan Tembaga

CL-Furnace

Newman C.J. Storey A.G., Macfarlane G., Molnar K., The Kidd Creek copper smelter - an update on plant performance, CIM Bulletin, 1992

113Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Refraktori Peleburan Tembaga

C-Furnace

MacRae A. Wallgren M., Wasmunf B., Lenz J., Majumdar A., Zuliani P., Elvestad P., Converting Furnace Upgrades At The Kidd Metallurgical Division Copper Smelter, Sulfide Smelting ’98, 1998

6 Rows cooler 5 Rows cooler Initial wall

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 114

Future of Copper

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 115

Future of Copper

https://www.visualcapitalist.com/visualizing-coppers-role-in-the-transition-to-clean-energy/

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 116

Future of Copper

https://www.visualcapitalist.com/visualizing-coppers-role-in-the-transition-to-clean-energy/

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 117

Future of Copper

https://www.visualcapitalist.com/visualizing-coppers-role-in-the-transition-to-clean-energy/

Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021 118

Future of Copper

https://www.visualcapitalist.com/visualizing-coppers-role-in-the-transition-to-clean-energy/

119Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

References

• Davenport W.G., Jones D.M., King M.J., Partelpoeg E.H., Flash

Smelting: Analysis, Control and Optimisation, 2nd Edition,

Pergamon Press, 2001.

• Goto M., Hayashi M., The Mitsubishi Continuous Process:

Metallurgical Commentary, Mitsubishi Materials Corporation,

1998.

• Grimsey E., Flash Furnace Model, The Western Australia

School of Mines, Curtin University, 2012.

• Jak E., Pyrometallurgy Course, University of Queensland, 2016.

120Zulfiadi Zulhan / Taufiq Hidayat / Imam Santoso MG3111 Pyrometallurgy 2021

Terima kasih!Program Studi Teknik Metalurgi

Fakultas Teknik Pertambangan dan Perminyakan

Institut Teknologi Bandung

Jl. Ganesa No. 10

Bandung 40132

INDONESIA

www.metallurgy.itb.ac.id

Dr.-Ing. Zulfiadi Zulhan, ST., MT.

zulfiadi.zulhan@gmail.com

Taufiq Hidayat, ST., M.Phil., Ph.D.

t.hidayat@itb.ac.id

D.Sc. (Tech.) Imam Santoso, ST., M.Phil.

imam.santoso@metallurgy.itb.ac.id

top related