05 - part2 (rev2) - gottbs.comgottbs.com/wp-content/uploads/2015/11/part2-rev2.pdf · -coriolis...

Post on 04-Aug-2018

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

CNG measuring systemsfor vehicles

Sistemas de medición deGNC de uso vehicular

Part 2

Day 1 review- The role of INTI as NMI- Metrology in Argentina- Legal Metrology at INTI- Natural Gas industry- CNG for Vehicles development- Gas Flow workgroup at INTI- Base metrology, national standards, traceability- CNG Path- Measurand description- Gas chromatograph, introduction- Flow meters for gas applications- Advantages and disadvantages- Characterization, calibration and adjust- Measuring systems

Day 2 strategy

DAY 5DAY 4

DAY 3DAY 2DAY 1

Exercises+Presentations

Index Part 2- Gas chromatograph- Coriolis mass flow meter- Characterization- Influence quantities- Advantages, aplications- Traceability techniques.- NG, N2, CO2 comparison- INTI's project

Gas chromatograph

Gas chromatograph

GC

GC measurement result

GC % M

MOLAR COMPOSITION

Shelter

Shelter

Sample line

Different samples

Line 1

Line 2Line 3

How it works ?

% M

1.

~

2.

~

~~

Velocity

C1

C2

C3

C4

C5

C6

C7

C8

C9

NG Mixture:

C H4

C5 H12

C6 H14

C3 H8

C2 H6

C4 H10

C7 H16

C8 H18

C9 H20

3.

~~

~~

~~

~~

V V

4.

~~

~~

~~

~~

V

5.

~~

~~

~~

~~

V V

6.

~~

~~

~~

~~

V V1 V2

2 gases

7.

~~

~~

~~

~~

V V1 V2

GCColumn

Barrier

8.

~~

~~

V

~~

V1

~~

~~

~~

V2 V3

3 gases

9.

~~

~~

V

6 gases

10.

~~

~~

V1 V2 V3 V4 V5 V6

~~

~~

~~

~~

~~

11.

~~

~~

a b c d e f

~~

~~

~~

~~

~~

DETECTOR

abcdef tt0 t1 t2 t3 t4 t5 t6

DETECTOR

How it works ?

1.

~~

~~

a b c d e f

~~

~~

~~

~~

~~

DETECTOR

2.

~~

~~

fDETECTOR

3.

gas

electrical signal

gas

DETECTOR

gasgas

4.

electricalsignal

DETECTOR

~~

~~D

e.g.:VoltageCurrent s (t)

5.

gas gas

electricalsignal

6.

~~

~~D

~~

~~

~~

~~D

D

7.

~~

~~D

AREA

s (t) electrical signal

s

8.

~~

~~D

s

f

What happens if I Know (previously) the %M of the gas ?

9.

~~

~~D

Sk

Gas with known %M

%Mk

10.

~~

~~D

Sx

Gas with unknown %M

%Mx

How can I obtain %M of an unknown gas ?

11.

Sk %Mkknown%Mgas

Sx %Mx

unknown%Mgas

SIMILARITY

12.

Sk %Mk

Sx %Mx

=

13.

Sk

%MkSx%Mx =

INTERNAL OPERATION

MEASURING INSTRUMENT

So far..

DETECTOR

~~

~~

Sk

%Mk Sx%Mx =

COLUMN

~~

~~D

t

s

Signal of a mixture

ZERO SIGNAL

CARRIER GAS

Gas Chromatogram

tt0 t1 t2 t3 t4 t5 t6

s

RETENTION TIMES

Internal operation

Sk

%Mk

Carriergas

Internal operationgas (known)

1.

Line 1Line 2Line 3

2.

3.

Line 1

Line 2Line 3

3.

Line 1

Line 2

Line 3

Pipelinegas

Carriergas

L1

L2

L3

4.

Pipeline gas

Carrier gas

I.o. gas (k)

Internal operation gas(known)

How those gases interact?

L2

5.

Carrier gas

STEP1

L2

6.Carrier GC

t

s

7.

L3I.o. gas (k)

STEP2

L3

8. GCI.o. (k)

~~

~~D

COLUMNS

9.

t

s

~~

~~D

sKf sKe sKd sKc sKb sKa

Electrical signals

sKf

sKe

sKd

sKc

sKb

sKa

Sk %Mk

%MKf

%MKe

%MKd

%MKc

%MKb

%MKa

10.

Signalsvaluesaresavedinsidethe GC

L1

11.

Pipeline gas

STEP3

L1

12. GC

~~

~~D

COLUMNS

Pipeline

13.

t

s

~~

~~D

sXf sXe sXd sXc sXb sXa

Electrical signals

SX

%MX

14. sXf sXe sXd sXc sXb sXa

electrical Signals

Sk

%MkSx%Mx = Measurement

Result

sXf

sXe

sXd

sXc

sXb

sXa

%MXf

%MXe

%MXd

%MXc

%MXb

%MXa

15.

sKf

sKe

sKd

sKc

sKb

sKa

%MKf

%MKe

%MKd

%MKc

%MKb

%MKa

MeasurementResultSk

%MkSx%Mx =

%MXf

%MXe

%MXd

%MXc

%MXb

%MXa

Measurement Result

% M

MOLAR COMPOSITION

Final consideration

L1

L2

L3

What about the minimum time to get a result?

L1

L2

L3

% M

¿? 1 min¿? 1 s¿? 1 h4 ~ 10 min

L1

L2

L3

Pipeline gas

Carrier gas

I.o. gas (k)

Metrological Control

L4Control gas

L5Verification *

Verification **

Metrological Control Summary

L4

Control gasCould be natural gas fromthe pipeline. Fill a tube, measure periodically (e.g. oncea day), make a control chart

L5

Verification *Traceable sample,Travelling standard.Legal MetrologyPeriodic Verifications

Verification **Take a sample on site,Measure in Laboratory.Legal MetrologyPeriodic Verifications

Oven temperature control

Temperature

PROCESS

T SET

PID is not enough !

GC in T&T

Final considerations

Coriolismass flow meter

Coriolis mass flow meter

CORIOLIS

kg kg

What doest it measures?

VOLUME MASSVS

Why measure mass?

Dynamic measure

INSTANT VALUE

TOTALIZATION

FLOW METER

Flow Rate

Quantity of fluid

Mass per unit of time

Mass flow rate

MASSFLOW RATE

kg/hkg/minton/dayet.al.

Density

Mass flow rate

Temperature

[ kg / m3 ]

[ kg / min ]

[ ºC ]

δ

qM

T

Primary measurements

Density

Mass flow rate

Temperature

[ kg / m3 ]

[ kg / min ]

[ ºC ]

δ

qM

T

1st Primary measurement

1.

DRIVER

SENSORS

MAGNET

COIL

BASE

2.

DRIVER / SENSOR1 VIBRATING TUBE

3.

1st MODE

2ND MODE

3RD

FUNDAMENTAL

(1ST MODE)

VIBRATION SYSTEM

DrivervE (t)

Sensor 1v1 (t)

MaximumAmplitude

Density = f (Resonance Frequency )

t

tv

v

4.

Tr

f

+ M.: f <

fR

MASS-SPRING SYSTEM

K

5.

- M.: f >

MASS

TRANSMISSIBILITY

v1 (t)S

vE (t)

vE

v1Tr =

6.v1 (t)

SvE (t)

AT RESONANCE

Tr

ffR

MaximumAmplitude

fR

What would happen if I change the fluid?

RESONANCEFREQUENCY

Density = f (Resonance Frequency )

Density

Mass flow rate

Temperature

[ kg / m3 ]

[ kg / min ]

[ ºC ]

δ

qM

T

2nd Primary measurement

Gaspard GustaveCoriolis

CoriolisForce

Coriolis Effect

F

F

V ω

Inertial force

Angularvelocity

COMBINED MOVEMENT

Radialvelocity

1.

2 VIBRATING TUBES

2.

PROTOTYPE

3.

1ST MODE

2ND MODE

3RD

VIBRATION SYSTEM

Esquema de Braces doble

PROTOTYPE

DRIVER

SENSOR1

SENSOR2

4.

DRIVERvE (t)

SENSOR 1v1 (t)

SENSOR 2v2 (t)

tv

tv

tv

5.

vE (t)

v2 (t)

v1 (t)

t

t

t

t

t

t

6.

WITHOUTCIRCULATION

WITHCIRCULATION

ΔT

v (t) t

PHASE SHIFT

7.

ΔT

v (t) t

MASS FLOW = f ( phase shift )

8.

ΔT

v (t)

ΔT = ~ 20 μs

t

MASS FLOW = f ( PHASE SHIFT )

9.

SENSOR 1

SENSOR 2

ELECTRICAL

SIGNALS

10.

fR

Analysis 1:

What would happen to theresonance frequency if I changethe fluid WITHOUT circulation?

What would happen to theresonance frequency if I changethe fluid WITH circulation?

CHANGE NO CHANGE

CHANGE NO CHANGE

Analysis 1:

What would happen to thephase shift if I changethe fluid WITH circulation?

What would happen to thephase shift if I changethe fluid WITHOUT circulation?

CHANGE NO CHANGE

CHANGE NO CHANGE

Mass flow =f ( Phase Shift )

fR

Analysis 1:

Mass flow = f ( Phase Shift )

What would happendto the resonancefrecuency if I changethe fluidWITHOUTCIRCULATION ?

Density

Mass flow rate

Temperature

[ kg / m3 ]

[ kg / min ]

[ ºC ]

δ

qM

T

3rd Primary measurement

Temperature

Sensor

Temperature measurement

Elasticity coefficient

EELASTICITYCOEFFICIENT

( YOUNG MODULE)

Esquema de Braces doble

ST

[ kg / m3 ]

ST

Density

[ kg / min ]Mass Flow rate

[ ºC ]Temperature

So far..

PRIMARY MEASUREMENTSSUMMARY

[ kg / m3 ]Density

[ kg / min ]Mass Flow rate

[ ºC ]Temperature

Secondary measurements

[ m3 / min ]

VolumeFlow rate

[ m3 / min ]

CorrectedVolumeFlow rate

Parts of a Coriolis mass flowmeter

CORIOLIS

TRANSDUCER

MEASURING DEVICE

CORIOLIS

SENSOR

Coriolis Sensor

TEMPERATURE

SENSOR 1

SENSOR 2

DRIVER

Coriolis Transducer

TEMPERATURE

SENSOR 2

SENSOR 1S.COND.

S.COND.

S.COND.

S.COND.

DRIVER

PULSESSignal amplification,conditioning, andprocessing

TEMPERATURE

SENSOR 2

SENSOR 1S.COND.

S.COND.

S.COND.

S.COND.

DRIVER

PULSES

CORIOLIS TRANSDUCER

Measuring device

CORIOLIS SENSOR

Measuring device vs Transducer

CORIOLIS

TRANSDUCER

MEASURING DEVICE

CORIOLIS

SENSOR

CORIOLIS

TRANSDUCER

TRANSDUCER

CORIOLIS

SENSOR

!=

RES.SCI 88 / 2012

OIMLR139-1 / 2014

METER

TRANSDUCER

CNG MEASURING SYSTEM

Constituents of a CNG measuring systemRES.SCI 88 / 2012

Meter output

[ kg ]Mass TRANSDUCER Pulses

TRANSDUCER

K factor

MASS

PULSESK =

i.e.:

1 PULSE = 1 g

1000 PULSES = 1 kg

Characterization

Density Characterization

Air / Water

Process fluid

Process fluid

Mass Flow rate Characterization

Characterization

Calibration(VIM 2.39)

Adjustment(VIM 3.11 Adjustment of a measuring instrument

Experiment

BALANZA

CORIOLIS METER

MESURANDO

VÁLVULADERIVADORA

BOMBA

S / R

6

4

2

1

0,5

NO

Test rig

MESURAND

DIVERTERVALVE

PUMP

SCALE

MEDIDOR MÁSICO

MESURAND

DIVERTERVALVE

PUMP

S / R

6

4

2

1

0,5

SI

CORIOLIS METER

SCALE

1.

Fluid flowing, no restriction

BALANZA

MEDIDOR MÁSICO

MESURANDO

VÁLVULADERIVADORA

BOMBA

S / R

6

4

2

1

0,5

SI

CORIOLIS METER

MESURAND

DIVERTERVALVE

PUMP

SCALE

2.

Fluid flowing, restriction (6)

BALANZA

MEDIDOR MÁSICO

MESURANDO

VÁLVULADERIVADORA

BOMBA

S / R

6

4

2

1

0,5

SI

CORIOLIS METER

MESURAND

DIVERTERVALVE

PUMP

SCALE

3.

Fluid flowing, restriction (4)

BALANZA

MEDIDOR MÁSICO

MESURANDO

VÁLVULADERIVADORA

BOMBA

S / R

6

4

2

1

0,5

SI

CORIOLIS METER

MESURAND

DIVERTERVALVE

PUMP

SCALE

4.

Fluid flowing, restriction (2)

BALANZA

MEDIDOR MÁSICO

MESURANDO

VÁLVULADERIVADORA

BOMBA

S / R

6

4

2

1

0,5

SI

CORIOLIS METER

MESURAND

DIVERTERVALVE

PUMP

SCALE

5.

Fluid flowing, restriction (1)

BALANZA

MEDIDOR MÁSICO

MESURANDO

VÁLVULADERIVADORA

BOMBA

S / R

6

4

2

1

0,5

SI

CORIOLIS METER

MESURAND

DIVERTERVALVE

PUMP

SCALE

6.

Fluid flowing, restriction (0,5)

BALANZA

MEDIDOR MÁSICO

MESURANDO

VÁLVULADERIVADORA

BOMBA

S / R

6

4

2

1

0,5

SI

CORIOLIS METER

MESURAND

DIVERTERVALVE

PUMP

SCALE

7.

Fluid flowing, restriction (combination)

BALANZA

MEDIDOR MÁSICO

MESURANDO

VÁLVULADERIVADORA

BOMBA

S / R

6

4

2

1

0,5

SI

CORIOLIS METER

MESURAND

DIVERTERVALVE

PUMP

SCALE

8.

Diverter switch, measuring

BALANZA

MEDIDOR MÁSICO

MESURANDO

VÁLVULADERIVADORA

BOMBA

S / R

6

4

2

1

0,5

NO

CORIOLIS METER

MESURAND

DIVERTERVALVE

PUMP

WEIGH SCALE

9.

End of cycle, recirculate

Real experiment

Characterization process

Error

Uncertainty

Characterization results

Output

1 PULSE = X kg

METER

Mass

METERTECHNOLOGY CHARACTERIZATION

So far..

Influencequantities

• Temperature

• Electric and mechanicaldisturbances

T [ºC]

t [s]

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

-300

-200

-100

0

100

200

300

400

V [V]

t [s]

Influence quantities

AGA Report Nº11( 2003 )

SIN CORRECCIÓN

Δφ

TINOX

Δ

φCCON CORRECCIÓN

TEMPERATURA INOX.

EELASTICITY

COEFFICIENT

( YOUNG MODULE)t

t

t

Influence of temperature

PHASE SHIFT

STAINLESS STEEL TEMP.

PHASE SHIFT CORRECTED

Influence of electric disturbances

Phase referenceZero crossingSignal processing

uS

Influence of mechanical disturbances

Amplitude

Hydraulic circuit

Power source offluid movement

P

q

+

-

Zero flow test

PHASE SHIFT PHASE SHIFT

0 0

Advantages,applications

CNG DISPENSER

GLP

CHEMICAL

INDUSTRY

REFINERY

OTHER

Measurement needs for Coriolis technology

CORIOLISMEASURING

SYSTEMS

Measuring systems in the CNG path

ULACT

METER

TRANSDUCER

Vehicular CNG applicationMEASURING SYSTEM

DISPENSER TRAVELLING STANDARD VEHICLE

Metrological control application

Traceabilitytechniques

Traceability techniques

Gravimetric Master meter

Gravimetric Master meterPVT

Traceability techniques

Pressure, volume, temperature

PV

T

Density

PVT EUT

PVT Calibration

Gravimetric Characterization

Static mass measure

EUT Weight Scale

Gravimetric Calibration

MM

Master meter Calibration

EUT

PVT

Natural gasNitrogenCO2

Process Fluid for tests

MASTER METER

GRAVIMETRIC

LIQUID

GAS

WaterHydrocarbonsGlycol

NG, N2, CO2comparison

CNG N2 CO2

Possible choices for calibration gas fluid

Others?

CNG Density example

Natural gas

Nitrogen 2,5358Carbon dioxide 0,99920Methane 89,5608Ethane 5,00230Propane 1,00040i-Butane 0,29590N-Butane 0,29100i-Pentane 0,10060N-Pentane 0,10120N-Hexane+ 0,11280

COMPONENT %M

0,7639kg/m3

δ

101,325 kPa15 °C

Density range (Argentina)

0,7Kg/m3

δ

101,325 kPa15 °C

< <

TYPICAL VALUE

~0,873kg/m3

~0,459kg/m3

δ

Density comparision

Dry air ~ 1,20Nitrogen ~ 1,15Carbon Dioxide ~ 1,80Helium ~ 0,17Hydrogen ~ 0,08Oxygen ~ 1,31

GAS δ

0,7kg/m3

101,325 kPa15 °C

NG

Which one would be a good choice?

INTI’sproject

CNG Laboratory, objetives

INTI’s PROJECT

Pattern approval testsVerification tests

2%2%-1,5%MEASURINGSYSTEM

--1%1%METER /TRANSDUCER

In.situIn.situLabLab

SUBSECUENT VERIFICATION

INITIALVERIFICATION

PATTERNAPPROVAL

Maximum Permissible Errors

CNG Laboratory

INTI’s PROJECTN2

H2OGASLIQUID

Gravimetric system Process Fluid

CNG Laboratory, general concept

EUT

DISPENSER TRAVELLING STANDARD VEHICLE

Verifications in situ

Master Meter approach

Part 2: Summary of contents

End of Part 2

- Gas chromatograph- Coriolis mass flow meter- Characterization- Influence quantities- Advantages, applications- Traceability techniques.- NG, N2, CO2 comparison- INTI's project

top related