04 pipe conveyors

Post on 30-Nov-2015

83 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The Pipe Conveyor ®

The Pipe Conveyor ®

The convincing Transport System

for every type of bulk material

2

3

4

Coal and Lignite Power Plants

Cement Plants

Steel Works

Chemical Plants

Wood And Paper Industry

Mines

Processing Plants

Costumers

5

6

Market

Wet and fly ash, slag, REA gypsum, FGD, filter cake.

Limestone, lime, gypsum, chalk, cement, clinker, clay, pozzolan.

Woodchips, wood pellets, straw pellets, bark chips, paper pulp, sewage sludge, wood waste,

saw dust, biomass, garbage, dried sewage, substitute fuel.

Coal, coal dust, lignite, tailings, muck.

Bauxite ore, bauxite, alumina, petcoke.

Iron ore, sinter, chromite, slag sand, gold ore, copper concentrate, zinc and lead

concentrate, nickel,

Kieserite, dolomite, crushed hard rock, slate

Raw phosphate, phosphate, urea, fertilizer, sulphur,

Plastic granulate,

For almost all bulk materials Long reference list capacity up to 8000 T/H length up to 8200 M built diameter up to 650 mm built

Strength

7

No spillage on return sector of conveyor Simultaneous conveying in upper and

lower conveyor strand Optimal adaption to extreme field

conditions ddue to horizontal, vertical and 3-dimensional curves

Safe and technologically perfect adaption to existing industrial facilities

Special applications Maximum protection of the transported

material and the surrounding environment

Long distance transport Low space requirement 50 % higher inclination compared to

conventional conveying systems Safe downhill transportation with high

percent of slope

8

Pipe Conveyor References > 2300 m length

Client Country Pipe Ø mm

Length m

Capacity t/h Material Industry Year of

comm. Pingyuan China 350 2274 1000 clinker, coal 2004

Petrozuata Venezuela 500 2301 1500 petrol coke, sulfur port handling

1999

DMW - Shaw / Cleco USA 500 2458 1361 petrol coke, limestone

power 2008

JPMC Eshidia Mine Jordan 400 2834 1250 phosphate raw material

1995

SAIL - Bhilai, Chhattisgarh. India 200 2912 100 lime steel 2012

EVN AG - KW Dürnrohr Austria 300 3160 550 coal power 2010

Birla Copper, Dahej India 450 3200 1760 1540 1100

copper concentrate, rock phosphate,

coal

mining 1999

VINACOMIN Vietnam 350 3600 600 coal mining 2009

DMW - First Energy Sammis USA 300 3870 453 gypsum FGD power 2009

Penna Cement, Tandur, Andhra Pradesh

India 350 4050 1100 limestone cement 2012

Vedanta Alumina Ltd, Lanjigarh Orissa

India 400 4334 alumina fines alumina 2009

Taiyuan China 250 4350 200 limestone burnt steel 2006

NTPC - Vallur, Tamil Nadu India 650 4353 4000 coal power 2012

Vedanta Alumina Ltd., Lanjigarh Orissa

India 400 4875 1150 bauxite ore alumina 2007

Ausenco Services Pty Ltd Papua New Guinea

300 5420 800 gold ore mining 2009

Holcim Shurova Russia 350 6200 1400 limestone cement 2009

Cementos Lima Peru 300 8200 690 515

cement or clinker ; coal or limestone

cement 2008

9

Weaknesses

Sensitive to overfilling and oversize material

Higher power consumption

Higher investment costs.

11

Conveyor Belt

Main Components

Special edge structure

Fabric insert for curve-going ability

Rigidity to stabilize

All common properties available

Diam.(150) 200 to 650 (800) mm

Tensile strength up to 5000 N/mm

Different suppliers

EP or ST type possible

molded edge

carrying side

running side

ply: steel or fabric

12

Conveyor Pulleys

Bigger pulley diameter

Wider pulley face

The ceramic pulley lagging ensures a high coefficient of friction

13

Idlers

permanent lubrication

multiple labyrinth seal

Low friction factor

Exposed to rain water

Site conditions to consider

Usage of different bearings

Axial forces to consider

Gaps in placing possible

Drive Unit

14

Fluid couplings

Gear motors

Back stop devices

Creeping speed by additional gear motor

Forced lubrication can be required due to

lower speed, Forced cooling

Full torque required

Load distribution to reduce forces

Load combinations to consider

.

Bevel helical design reduces space

hollow shaft for low size

Bigger sized gear boxes connect by coupling

Multiple drives are possible

Intermediates drives are possible

VFD controlled, torque controlled

.

15

Drive Unit

At high speed side

At low speed side

Consider throttle valves

Controlled brake – torque over time ramp

With power back-up

For downhill applications

To manage full and empty conditions

Brakes

16

screw-type tail take-up

gravity tail take-up

gravity head take-up vertical

gravity head take-up horizontal

winch type take-up

Take-up systems

Cap stan brake to increases take-up

tension while braking

17

Take-up systems

Tower with drive unit and take-up

Take-up with controlled winch

18

Belt Cleaning System

19

integration in the standard cross

section

for weighing and control of the

transported material

Conventional scales possible in

transition area

Pipe Conveyor Belt Scale

Feeding area

20

Design of Pipe Conveyor

Skirt board

Width = 1,6 to 2 x PC diam.

Shorter length due to transition area

Variable idler stations necessary

Finger rollers to close the belt

21

Feeding spoon to accelerate material and avoid dust

22

Transport in upper strand

Transport in upper strand and lower strand

23

Intermediate feeding

24

Multiple feeding

25

Double Transport Patented “Pretzel”

26

Double Transport

27

Safety devices feeding area

Overfill Paddle at Skirtboard

Overfill Paddle to avoid Belt Overloading

28

Safety Flap Panel

flap panel opens automatically if the belt is

overfilled with either the product or with

foreign material

29

Conveyor is stopped when foreign material penetrates the belt

Mechanical Belt Rip Detection

Feeding Table

30

Electronical Belt Rip Detection

BELT RIP SCANNER

BELT

COMPUTER

COIL COIL COIL CHARGE CHARGE

~25

S1

~350S1

Loop marks

loop cords

PHOENIX-STEEL-CORD-BELT

with sensor loop

P H O E N I X

C-Sheet: CL Date: 06.05.97 Name:060597 labus

belt width

BELT WIDTH

LOOP MARKS LOOP CORDS

31

Discharging area

• Belt opens automatically at the discharge area

• After material discharge the belt is closed again

• Idler stations in front of discharge

pulley to prevent belt turnovers caused by belt twisting

How to design the PC

32

“PC inquiry data sheet” General data

Regarding Location

Climatic conditions

Material properties

General design data

Electric, control

Standards and regulations

Scope of supply; Interfaces

Time schedule

Etc.

No Data - no Offer

33

Diameter of Pipe Conveyor Consider lowest density for volumetric flow

Max. 50 to 75 % filling ratio, depend on lump size

Diameter = 3x max.lumps

Consider additional max. lump

Job NTPC outer diameter 685 mm Belt width 2400 mm belt thickness 22,4 mm neutrale layer 13,5 mm R0 336,5 mm R1 329,0 mm R2 314,1 mm R3 306,6 mm L1 12,9326 mm overlapping 63,0 ° cross section.100% 30,763 dm² Capacity 4000 t/h Density 0,8 t/m³ Volumetric flow 5000,00 m³/h Velocity 6,00 m/s Reduction due Curve 80% % Cross section 0,23148 dm² Filling ratio 75,2% % Straight Filling ratio 94,1% % Curve

PC is very specific

No standards in Europe

Free to offer acc. Own standards

Safety to consider

CEMA 6`th – design recommendations

34

Recommendations done by “CEMA 6th edition” to give thumb values

PC is very sensitive against overfilling due to oversized lumps.

For critical material measurements have to be taken – crusher, screen

35

Maximal transport capacity of Pipe Conveyors

Coal Iron ore

Density [t/m³] 0,8 2,4

Density [lb/ft³] 50 150

Diam Pipe Conveyor Velocity Capacity Capacity Capacity

in mm in inch in m/s in ft/min in m³/h in

ft³/min in t/h in t/h

150 6 2,1 421 94 55 75 224 200 8 2,1 421 165 97 132 396 250 10 3,0 594 366 215 292 877 300 12 3,0 594 520 306 416 1248 350 14 3,0 594 716 421 573 1718 400 16 3,7 722 1131 665 904 2713 450 18 3,7 722 1430 841 1144 3432 500 20 3,7 722 1761 1036 1409 4227 550 22 4,5 890 2630 1547 2104 6312 600 24 4,5 890 3152 1854 2521 7564 650 26 4,5 890 3675 2162 2940 8820 700 28 5,4 1065 5103 3002 4083 12248

To be competitive –

Low diameter and high velocity

Attention to be paid to

Lump size

Pre-acceleration of material

36

Recommendations done by “CEMA 6th edition” to give thumb values

Power consumption and Belt Type

37

Capacity

Density

Grain size

Velocity

angle of deviation

PC diameter

Panel distance

Idler diameter

Pulley diameter

Temperature / F-value

Number Transition areas

Wrap angle pulley

Friction factor

Drive power head/tail

Time start/stop

Take-up force

Belt data

Strength/weight

PC calculation P r o j e c t Number : K2.0395 dazugehörige Z e i c h n u n g: Route A-I_in Arbeit_RevB für Berechnung Datum 05.09.2011

C l i e n t :

Ausenco PNG Papa New Guinea Morobe Hidden Valley 07MP092

0 stph 1 pcf 0,000 m3/h 0,000 t/h 16,018 kg/m3

173,91304 10434,78 cfph 615,4 m³ / h Gold ore resistance factor in curves 0,03075 Fc

Conveying Capacity : 1300 kg/m³ ====> ergibt 800,0 t/h am OG resistance factor : 0,02446 Fw

bulk density : 100 mm 0 t/h am UG additional resistance length 36,08 m lo

grain size : 4,00 m/sec ====> erf. Pipe∅ 319,2 Pipe shape keeping force : 10297 N F1

conveying speed-v : 90 necessary min. radius R 289 m Pipe shape force total : 2502 N F2

max. angle deviation in° : 300 effective filling rate in % 92,1 4 curve resistance total : 207515 N F3

selected PipeØ : 1200 mm

calculation area 66% vom Nenn- durchmesser curve resistance total empty : 207515 N LF3

belt width : 1,80 m

chosen Panel dist. 1,50 m motor power empty operation : 1390,04 kW N1

max distance betw. Idlers : 1,50 m

chosen Panel dist.Curve 1,50 m necessary motor power hor. : 284,40 kW N2

idlerØ / length : 133,0 mm /

290 mm Gew. 4,31 kg necessary motor power vert. : -772,70 kW N3

idler speed : 574,4 UpM =OK min. Anzahl 43080 Quantity 28,92

Panel: height / width : 1252 mm / 626 mm Anzahl 3588 Quantity C1 = 63598 N R1= 63598 N

drive pulley Ø min. : 800 mm Pulley diam ∅ = 1030 mm C2 = -191063 N R2= 0 N

drive pulley speed : 74,2 UpM inkl. Reibb. C3 = -152406 N R3= 152406 N

D I S T A N C E L O A D S 1865 UpM Motor-rpm C4 = 5148 N R4= 5148 N

material 55,6 kg / m total load belt + rollers / m = w 99,0658 C5 = 834 N R5= 1668 N

belt per cord : 32,3 kg / m C6 beladen = 111386 N R6= 96129 N

rollers per cord : 17,2 kg / m C6 leer = 111386 N R6= 96129 N

ambient temperature : 30 ° C

T1= 265 kN T2= 113 kN

average friction value - 'f' : 0,02430 T4= 319 kN T3= 391 kN

amount belt closing upper belt : 1 Belt

T1= 326 kN T2= 113 kN

amount belt closing lower belt : 2 EP oder ST ST T4= 258 kN T3= 391 kN

material on return strand : 0,0 kg / m deflection angle in ° : 710,73

: input see system sketch

Part Sec length / m

+ / - height / m

incl

inat

ion

radius / m vertikal

o,u, so, su, sou a in ° radius / m horizontal α ιν °

+ / - height / m

horiz. resp vertical curve length / m

actual horiz. curve radius actual length in m

actual inclination in °

lifting height in m

1 67,40 0,000 0,0 0,00 0,00 67,40 0,00 0,00

2 0,000 0,0 300,00 u 9,13 0,00 47,80 0,00 47,80 -9,13 -3,80

3 0,000 -9,1 320,00 5,04 -4,52 28,15 324,11 28,51 -9,13 -8,32

4 155,80 -25,039 -9,1 0,00 0,00 0,00 157,80 -9,13 -33,36

5 0,000 300,00 suu 22,86 0,00 119,69 0,00 119,69 13,73 -28,59

6 0,000 300,00 sou 11,06 0,00 57,91 0,00 57,91 2,67 -20,34

47 0,000 300,00 sou 2,19 0,00 11,47 0,00 11,47 3,00 -370,80

48 0,000 3,0 230,00 8,37 1,76 33,60 230,32 33,65 3,00 -369,04

49 0,000 3,0 260,00 25,47 6,06 115,58 260,36 115,74 3,00 -362,98

50 196,68 8,515 2,5 0,00 0,00 0,00 196,86 2,48 -354,47 0

total length : 5399,20 m horizontale Länge ====> 5332,79

conveying height : -354,47 m

average inclination : -3,80 ° Power inclined loaded 2051 kW

max. height : -481,03 m Art des Anlaufes ==> h Power declined loaded 487 kW

theor. drive power empty : 1.390,1 kW 1387,0 h = sanft

theor. drive power full : 901,8 kW 896,7 s = starr

mech. efficience : 0,9000

min. nec. drive power : 1002,0 kW 996,4 1544,5556 leer 2520 kW bei +30° C

installed drive power : 2520,0 kW = Head kW Tail kW

1260 1260

friction factor Belt/Drive pulley : 0,55 <<=== ========= 0,10-0,15= plain and wet å kW 0

wrap angle : 200 ° 197,1 0,30-0,40= checkered rubber but dirty

calculated by : Dr. Wiedenroth 0,45-0,60= checkered rubber dirty until dry

38

P r o j e c t Number : K2.0395 dazugehörige Z e i c h n u n g: Route A-I_in Arbeit_RevB für Berechnung

Datum 05.09.2011

C l i e n t : Ausenco 0 stph 1 pcf 0,000 m3/h 0,000 t/h 16,018 kg/m3 173,91304 10434,78 cfph 615,4 m³ / h Gold ore resistance factor in curves 0,03075 Fc Conveying Capacity : 1300 kg/m³ ====> ergibt 800,0 t/h am OG resistance factor : 0,02446 Fw bulk density : 100 mm 0 t/h am UG additional resistance length 36,08 m lo

grain size : 4,00 m/sec ====> erf. Pipe∅ 319,2 Pipe shape keeping force : 10297 N F1

conveying speed-v : 90 necessary min. radius R 289 m Pipe shape force total : 2502 N F2 max. angle deviation in° : 300 effective filling rate in % 92,1 4 curve resistance total : 207515 N F3

selected PipeØ : 1200 mm

calculation area 66% vom Nenn- durchmesser

curve resistance total empty : 207515 N LF3

belt width : 1,80 m chosen Panel dist. 1,50 m motor power empty operation : 1390,04 kW N1

max distance betw. Idlers : 1,50 m chosen Panel dist.Curve 1,50 m necessary motor power

hor. : 284,40 kW N2

idlerØ / length : 133,0 mm / 290 mm Gew. 4,31 kg necessary motor power vert. : -772,70 kW N3

idler speed : 574,4 UpM =OK min. Anzahl 43080 Quantity 28,92 Panel: height / width : 1252 mm / 626 mm Anzahl 3588 Quantity C1 = 63598 N R1= 63598 N drive pulley Ø min. : 800 mm Pulley diam ∅ = 1030 mm C2 = -191063 N R2= 0 N

drive pulley speed : 74,2 UpM inkl. Reibb. C3 = -152406 N R3= 152406 N

D I S T A N C E L O A D S 1865 UpM Motor-rpm C4 = 5148 N R4= 5148 N

material 55,6 kg / m total load belt + rollers / m = w 99,0658 C5 = 834 N R5= 1668 N

belt per cord : 32,3 kg / m C6 beladen = 111386 N R6= 96129 N

rollers per cord : 17,2 kg / m C6 leer = 111386 N R6= 96129 N

ambient temperature : 30 ° C

T1= 265 kN T2= 113 kN

average friction value - 'f' : 0,02430 T4= 319 kN T3= 391 kN

amount belt closing upper belt : 1 Belt

T1= 326 kN T2= 113 kN

amount belt closing lower belt : 2 EP oder ST ST T4= 258 kN T3= 391 kN

material on return strand : 0,0 kg / m deflection angle in ° : 710,73

39

-600

-500

-400

-300

-200

-100

0 0 1000 2000 3000 4000 5000 6000

Rel

ativ

e he

ight

in m

Distance from the feeding point in m

Height profile

Local peaks in belt tension

Different loading cases – tension and power consumption vary

40

: input see system sketch

Part Sec length / m

+ / - height / m in

clin

atio

n

radius / m vertikal

o,u, so, su, sou a in °

radius / m horizontal α ιν °

+ / - height / m

horiz. resp vertical curve

length / m

actual horiz. curve radius

actual length in

m

actual inclination

in °

lifting height in

m 1 67,40 0,000 0,0 0,00 0,00 67,40 0,00 0,00 2 0,000 0,0 300,00 u 9,13 0,00 47,80 0,00 47,80 -9,13 -3,80 3 0,000 -9,1 320,00 5,04 -4,52 28,15 324,11 28,51 -9,13 -8,32 4 155,80 -25,039 -9,1 0,00 0,00 0,00 157,80 -9,13 -33,36 5 0,000 300,00 suu 22,86 0,00 119,69 0,00 119,69 13,73 -28,59 6 0,000 300,00 sou 11,06 0,00 57,91 0,00 57,91 2,67 -20,34

47 0,000 300,00 sou 2,19 0,00 11,47 0,00 11,47 3,00 -370,80 48 0,000 3,0 230,00 8,37 1,76 33,60 230,32 33,65 3,00 -369,04 49 0,000 3,0 260,00 25,47 6,06 115,58 260,36 115,74 3,00 -362,98 50 196,68 8,515 2,5 0,00 0,00 0,00 196,86 2,48 -354,47

0 total length : 5399,20 m horizontale Länge ====> 5332,79 conveying height : -354,47 m average inclination : -3,80 ° Power inclined loaded 2501 kW max. height : -481,03 m Art des Anlaufes ==> h Power declined loaded 487 kW theor. drive power empty : 1.390,1 kW 1387,0 h = sanft theor. drive power full : 901,8 kW 896,7 s = starr mech. efficience : 0,9000 min. nec. drive power : 1002,0 kW 996,4 1544,5556 leer 2520 kW bei +30° C installed drive power : 2520,0 kW = Head kW Tail kW 1260 1260 friction factor Belt/Drive pulley : 0,55 <<=== ========

= 0,10-0,15= plain and wet å kW 0

wrap angle : 200 ° 197,1 0,30-0,40= checkered rubber but dirty calculated by : Dr. Wiedenroth 0,45-0,60= checkered rubber dirty until dry

41

0

50

100

150

200

250

300

350

400

450

500

0 1000 2000 3000 4000 5000 6000

Bel

ttens

ion

in k

N

Distance from the feeding point in m

Belt tension steady operation

Upper Strand loaded Lower Strand loaded Upper Strand empty Lower Strand empty

Drops in belt tension to be considered

42

Belt Tension and Elongation for Curved Sections

Compression of the belt - buckling

43

Dynamical Analyses

Identifies belt tension at various points along the conveyor over short time increments during acceleration and stopping.

Belt Tension [N]

Belt Speed [m/s]

44

Pipe Conveyor Geometry

Routing

Thumb values are

Fabric belt: 300 x PC diam = curve radius

Steel cord belt: 600 x PC diam = curve radius

Avoid compound curves

Consider min. radii

Inclination/declination approx 30°

Follow Ground profile

Eaquel gantries / Structure

Eaquel Trestles

Smooth routing

Top View

Side Elevation

45

RECOMENDED MINIMAL RADII FOR CURVES

Belt Carcasse Diameter „d“ Curve radius „R“

in mm < 25° 25° bis 50° 50° bis 75° 75° bis 100°

Nylon (PP) 150 – 300 300 d 400 d 500 d 600 d

350 – 500 400 d 500 d 600 d 700 d

Polyester Nylon (EP)

150 – 300 400 d 500 d 600 d 700 d

350 – 500 500 d 600 d 700 d 800 d

Aramid (D) 150 – 300 500 d 600 d 700 d 800 d

350 – 500 600 d 700 d 800 d 900 d

Steel cord (St)

150 – 300 700 d 800 d 900 d 1000 d

350 - 500 800 d 900 d 1000 d 1100 d

46

Inclination up to 30°

47

Conveyor Routing

Smooth conveyor line Following ground elevation Optimization of steel consumption and abilities of PC

48

Road crossing Smooth design required Causes instability

49

X

X Y Z

Eaquel gantries / Structure Eaquel Trestles

50

Head end

Tail end

51

3-D-MODEL TOPOGRAPHIE PIPE CONVEYOR

52

Optimiziation of gantries and trestles

53

Optimiziation of gantries and trestles

54

Optimiziation of gantries and trestles

55

Optimiziation of gantries and trestles

56

Optimiziation of gantries and trestles

57

Optimiziation of gantries and trestles

Pipe Conveyor Manual

58

Internal PC Standards

Design rules

Standard Dimensions

Standard Components

59

Conveyor structure

Light structure suspended

Light structure On sleepers

60

Light structure L-pofile panels

Light structure Plate panels

61

Light modules onto supporting structure

Light gantry

62

Standard gantries

63

Standard gantries

64

Conveyor inside Galleries

65

Triangular Galleries

66

Triangular Galleries

67

Special application

68

Supports

portal support

1-leg support steel

1-leg support concrete

A-support

69

Optimized trestle design

X

Y Z

Transition Area

70

Thumb values are

Fabric belt: length = 30 x PC diam

Steel cord belt: length = 60 x PC diam

Has to be straight

Declined for critical materials

71

If blockages can occurs Number of Panels according stopping way Section has to be straight

Safety Flap Panels

72

Belt Turn-over

73

Belt Turn-over

3

2

the unguided turn-over

the Mordstein Type with supports guiding

the belt over the length of the turn-over

section

the guided type by vertical middle roller

74

Walkways

Walkway at one side <350 mm PC Diam. Walkway loads 150 kg/m² respectively 300 kg single load are preferred.

75

Safety covers

Plates

Meshes

Roof cover

76

Trolley Limited Access Max. Inclination 12°

77

Miscellaneous

Cold climate conditions

Conglomeration of material

Blockage of Pipe Conveyor

Freezing of Material inside Closed Belt

High Power consumption

Construction, commissioning

Time consuming belt pulling

Adjustment of rollers

Adjustment of Belt

Noise emission

More idlers – more noise emission

Values up to 88 db(A) sound pressure

78

Alignment Of Pipe Conveyor Belt

The above sketch shows an overlapping located too far left. Correction has to be carried out by adjusting the carrying idler (as shown). The selection of idler(s) to be adjusted depends on the local line and the pressing of the belt on each idler. *Note: numbers in brackets refer to the lower strand

top related