ammonia-selective electrode determination of nitrogen in fertilizers

Upload: vicboy41

Post on 06-Jul-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Ammonia-Selective Electrode Determination of Nitrogen in Fertilizers

    1/7

    1096   DOY  &   GUIJOSA,   J.   ASSOC. OFF. ANAL.   CIIEM,   (VOL. 64, NO. 5, J9RI)

    FERTILlZERS

    Ammonia-Selective Electrode Dctermillation oí Nitrogcll

    in Fertilizers

    VICTOR M. HOY and MANUEL GUljOSA

    Fertilízl1Iltes M exicallos, S.A., SlIbgerencia de IllvesfigllciólI, Chiapas   184, México   7, n.r.

    The official AOAC nldgnesium ollide method 

    (MOM), 2.065,fOfdeterminin¡; ammnni¡ll:ai nitrogen

    in fertilizen; not containing ure,l was compared with

    .In alternative anllllonia-se1ective electrode rnethod 

    (A5EM.1). likt-wise, the official AOAC Raney

     pnwJer nlelhod (l{PMI,2.063.2.064, for Jelt"fmining

    , total nitrogen in fertilizers, except nitric phosphates

    cOlltaining nOllsulfate S, WolScompareJ with an am.mnnia-se1eclive electrode method (A5EM-2). Each

    comparison includeJ 6 s

  • 8/17/2019 Ammonia-Selective Electrode Determination of Nitrogen in Fertilizers

    2/7

    BOY   &:   GUIJOS":   J.   ASSOC. OrFo ANAL CHEM.   (VOL.   1>4,NO. 5, 19f1l)  

    (e)   Tar/arie acid   soll1lioll.-lO% aqueous solu-

    tion.

    (d) Sodilllll 1l.lIdroxidc solulioll.   -ION.

    (e)   Ammolliacalllitrogcll so/uliolls.-Slock   so/u-

    lio/l.-1400   ~g   N/mL. Dissolve 5.35 g Teagentgrade NH4Cl in water in 1 L volumetric flask and 

    dilute lo valume with water,   Workillg 50/11-

    1;0115.-(   J)   700.ug N¡rnL. Transfer 100 mL stock 

    solution lo 200  ml   volurnclric f1ask, add 20 ml

    tartaric acid soiution, dilute lo volume wilh

    water, and mix. (2) 140.ug N{mL. Transfer 50

    rnL solution 1 lo 250 rnl volumetric flask. add 20

    mL tartarie acid solution. dilute lo volume with

    water, and mix. (3) 70 .ug N¡mL. Transfer 100

    rnl   solulion   210  200 ml   volumetric flask, add   10

    rnL lart

  • 8/17/2019 Ammonia-Selective Electrode Determination of Nitrogen in Fertilizers

    3/7

    1098   HOY   & :   GUIJOSA: /. ASSOC. OFF. ANAL. CIiEM. (VOL. 64, NO. S, 1981)

    Table 2. Comparison 01results by olficial magneslum oxide and ammonla-5elective electrode methods on 6 samples

    01   !ertilizers

    Ammoniacal N. %

    Average Std dev,   Coelf. 01var,. %Magruder 

    Sample   results   MOM   ASEM-l   MOM   ASEM.1   MOM   ASEM-I

    1   7.718 :r 0.3648   7.547 0.1084   1.4362"   2.7040:t 0.0430   2.717   2.593 0.0288 0.0557   1.060 2.1483"   11.035   :t 0.0786 11.088   11.213   0,0821   0.0393 0.740   0.3504"   18.24 :1:0.17 18,267   18.058 00907 0.0454   0.497 0.2515 b.c 21.20(theor.)   21.138 21.063 0.0417 0./224   0.197 0.5666~.d    17.50(theor.)   17.527   17.232 0.0698 0.0527   0.398 0.306

    ~ Significant dillerences in averages al 95% leyel, t-test.1 >   Ammonium sulfate. reagent grade.

    e   Signilicant differences in stilndard deviation at 95% level, F-test.dAmmonium nitrate. reagent grade.

    Thc ammonium sulfate and ammonium nitrate

    samples were reagent grade.Mean per cenl nitrogen, standard deviations,

    and relative standard deviations (CV,%)for each

    of the samples by both methods are given in

    Table 2. No value was rejccted at the 95%sig-

    nificance level by the Dixon test (11), When

    standard deviations were compared by means of 

    the F-test, differences were statistical1y signifi-

    cant only for the ammonium sulfate samplc,

    which indicatcs equivalent prccision for both

    mcthods:although the l-test showed significant

    statistical differences in the averages for 4 of the

    5 samples studied. Therefore, MOM and 

    ASEM-l gave comparable prccision, but average

    values for MOM are in bt'tter agreement with

    refcrence values than are averages for ASEM-

    1.

    Total Nitragen

    Six samples (7-12, Table 1) were .:malyzcd in

    6 replica tes for lotal nitrogen by RPM and 

    ASEM-2. Samples 7905 B, 7907 B, 7807, 7709,

    7717, and 7607were analyzed by 5, 5, 6, 7, 5, and 

    7 participant laboratories, respectively, in tlw

    Magruder check sample program   (lO).In a preliminar)' cxperiment with ASEM-2,

    nitrogen was measured wilh the ammonia-se-

    lective electrode directly a£ter digestion; howw

    ever, values were very high. These high values

    mal' be due to the increascd ionic strength of the

    solution caused by solids forml'd during the ad-

    dition of NaOH to evolve ammollia. Such re-

    sults an' in accordanc{' with observations by

    other authors (2, 7) who recommended that

    samples ano standards have the same ionic

    strength. Further studies are necessary to con-

    sider this eHecL

    Mean per cent nitrogen standard deviations,

    and coefficienls of variation for t'ach ()f the

    S   Significant diflerences in standard deyiations at 95% level. F.test.

  • 8/17/2019 Ammonia-Selective Electrode Determination of Nitrogen in Fertilizers

    4/7

    BOY   &   GUIJOSA:   J -   ASSOC. OH. ANAL.   CHEM.   (VOL. (,4, NO. S, 1981)   1099

    In general. the average valucs   fOf   arnmoniacal

    and total nitrogen   by   MOM and RPM are in

     better agreement with the referenee values than

    are lhe average valucs ohtained    byASEM-l and 

    ASEM.2. This means that the ac(uraey of the

    magnesium oxide method and RalH'Y powder 

    rnethod are better Ihan those obtained    by   am-

    monia-selective e¡c(trode tcchniques. 00 the

    other hand, Ihe average vaJues ohtained    by

    ASEM.l and ASEM-2 are higher than those ob-

    lained    by   MOM   Uf  RPM.

    The accuracy and precision of Ihe ammonia-

    selective electrode technique is suitable   fOf  

    confine determination of ammoniacal nitrogen.

    It simplifies Ihe normal procedure because Ihe

    distillation step is omitted. In the determinatian

    o C   total nitrogen with the Raney powder method,

    the final titration can be substituted    by an elec-

    trode measurement, hut with no improvemento C   results.

    REFERENCES

    (1) Hoove-r, W. L., Colvin, B. M., Me!ton,   J . R., Hanks,

    A. R., & Howard, P. A. (1977) De-terminalion of 

    nilrogen in fertilizers and protein in feeds by the

    Orion ammonia ('¡('ctrode, Bull. Prpl.   AXri •. A/lul.

    Srrvirrs,   TeXilSA&M University, ColI('g(' Slation,

     TX

    (2) Thomas, R. F., & Booth, I{. L. (1973)   £I1l'iro/l.   Sci.

    TccJl/Illl.   7,523-526

    (3) Cilbert, T. R.,& Clay, A, " ' 1 .   (1973)   Aual.   Clre1/!.   45,1757-1759

    (4) Renfro, L.J.,   &Patel, Y.(I974)   f.  AI'I,I.   PII.IISilll.37,

    756-757

    (5) Barbera, A., &Cant'pa, D. (1977)   1 -   AS."Ilf.  Off. Al/al.

    OCIII.   (,0,708-709

    (6) Woodis, T. c.,   Jr,   &Cummings, J. M., Jr (1973)'. Assoc. 0lf.   Allal.   Chem.   56,373-374

    (7) Eagan, M. L., &Dubois, L. (1974)   Al1al.   CJ¡jm.   Aria

    70,157-167

    (8)   0l/icial   Metlwds   o/   Al1/1I.II';S   (1980) 13th Ed., AOAC,Arlington, VA, secs 2.065, 2.063-2.064

    (9)   'Ilstmclioll   Manual   Irlr    Ammon;a Elec/rode i\ltJdl'1

    95-10 (1975) Orion Researeh, Ine., Cambríd~e,

    MA

    (10) Statistical Evalualion on 7607, 7709, 7712, 7807,7905 n, 7907   n , 7908, and 8003 M

  • 8/17/2019 Ammonia-Selective Electrode Determination of Nitrogen in Fertilizers

    5/7

    COROMINAS ET   Al..:   l. ASSOC. OFF. ANAL. CHEM.   (VOl.   63, NO. 3. 1980)

    Preliminary ComparisoH of Methods for Determining

    Sodium in Fertilizers

    LUIS F. COROMINAS, VICTOR M. BOY, and MANUEL GUIJOSA

    i=erfilizllntes Mexicanos, S.A., Resellrcll Division, Zacatecas 80, México   7, D.1=.

    551

    The AOAC offidal hrst action method 2.147-

    2.150 for the f1ame emission speclrophotometrk 

    (fES) determinalion of sodium in ferlilizers was

    compared wHh the atomic absorption spectro-

     photometric (AAS) method and Ihe sodium selec-

    tive electrodc (SSE) method. Two synthetic NPK 

    samples, 3 commercial samples (urea, DAP, and 

    superphosphate), 2 Magruder NPK check samples,

    and one Magruder muria te check sample were

    used for the study. Slatistically significant differ-

    ences were obtained in both averages and standard 

    deviations for all samples. In general, the preci-

    sion for all methods was acceptable; the AAS

    method seems to be the more accurale¡ the AOAC

    method needs lo be revised; and the SS[ melhod 

    has the tendency lo give higher values. Addilional

    experimental work is necessary to define which

    method is the most convenient.

    Previous experimental work (1-3) on the

    detcrmination oE sodium in Eertilizers resulted 

    in the adoption   o E    the AOAC officia.l Hrst ac-

    tion method 2.147-2.150 (4), which is based 

    on a fl.1mc cmission spectrophotomelric peoce-

    dure (FES). It seems thal this method is not

    used in many laboratorics. The Magruder re-

     port for Samplc 7804 (5) showcd Ihat 23 Ia.bo-

    ratories repoded valucs Eor sodium and    o E 

    these. only 5 used the FES method .1nd 17 used 

    an atomic absorption spectrophotometric pro-

    cedure (AAS). The availability   o E    a sodium

    selective electroue (SSE) suggested the possi-

     bility   o E    applying this tcchnique to the de-

    termination of sodium in fertilizers, thus

    greatly simplifying the analysis.

    '"Ve dccided to perEorm a preliminary study

    comparing the official AOAC procedure (FES

    method) with the 2 aIternative methods. TheFES method was tcsted using 2 different types

    o E    equipment and flamesj the AAS rnethod 

    was adapted frorn a procedure for phosphate

    rock    (6)j   and the SSE mcthod was established 

    Eollowing the recommendations from the elcc-

    trode 5upplicrs (7, 8).

    Comparative Sludy

    Table 1 shows the 8 samplcs used   E o r    com-

     parative evaluation. Thrcc samples were com-

    rncrcial fertilizers of unknown sodium con-

    centration, 2 samples were Magruder NPK fer-

    tilizer check samples, 2 were synthetic NPK 

    samples, and one was 7804, Magrudcr muria te

    check sample, mentioned earHee. Samples were

    selected to test the applicability of the peocc-

    dures to different types   o E    products and levels

    of sodium content. Ten replica te determina-

    Iions were performed on each sample for each

    method.

    METHODS

    1. F1ame Emission Spectrophotomelric

    Method 1 (FES Methud-l)

    See 2.147-2.150 (4). Readings were made using

    Model Mark 11flame photometer (available fraIn

    Evans Eledroselenium Ltd), wilh air-propane

    flame.

    n .   Flame Emission Spectrophotometric

    Method 2 (FES Method-2)

    See 2.147-2.150 (4). Readings were made using

    Model AA6 atomic absorplion spectropholometer 

    (available from V••rian Techlron Ply Ud) in emis-

    sioo mode. wilh air-acetylene flameo

    111. Atomic Absorption Spectropholometric

    Method (AAS Method) (5)

    Apparatus and Reagents

    (a)   Atomic absorptioJl spectropllOfometer.-

    Model AA6 (Varian Techlron Ply Ud), or equiv-

    alent.

    (b) SodiulIl   so{utiolls.-(l) Stock    SOIIl/íOlI.-

    1000   IIg   Na/mL Disso]ve 2.5421 g rure NaCI in

    ca 3-5 rnl HCI (1 +   1). Di]ule lo 1 L (2) Workingstandard    solutioIlS.-O, 20, 40, 100. and 200 M~

     Na/ml. To 250 ml volumelric flasks, add O. 5.

    10, 25, and 50 ml Na stock solulion. Adjusl each

    standard to ca o.lN in HCI (aboul 0.8 ml HCII100 ml) and dilule lo 250 mL.

    Preparation of Sample Solution

    Weigh 1.00 g sample into 250 ml beaker. add 

    15 ml HCI (1+ 1) and digesl 15 min on hol plale.Filter Ihrough fas! paper inlo 250 ml volumelric

    f1ask. washing paper and residue Ihoroughly with

    waler. Measure absorption of soIution directly or 

    dilule with o.IN HCI to oblain soIulion withinrange of inslrumenl.

    Rece;ved AUlI:u,1 30. 1979. Accet>led Dl'cl'mber    U.   1979.

    000"-'7'6/80/6303--0"1-03$01 ,00~ A••o(iolion of Offieiol Anolylicol Chemi,h, In(.

  • 8/17/2019 Ammonia-Selective Electrode Determination of Nitrogen in Fertilizers

    6/7

    552   COROt.UNAS ET AL.,   J .   ASSOC. OFF. ANAl. CHEM. (VOL. 63, NO.   J,   19~O)

    Table l. Description 01lertili;ter samples studled 

    This "'po.1 01 the As~odale Referce wa, p.e,enled al lhe

    9Jrd Annual Meeting of lhe   AOAC, Oct. 1.5--1&,1979, ilt

    W,)shin¡:lon,   OC.

    Determinationo

    5et wavelength al 5890A. Adjust burner hcad 

    900 to   bcam   oc   anolher position   if   preferred loreduce sensitivity, using air~acetylene flameo As-

     pírate standards and unknown samples. PJol curve

    from standard values and determine Na content of 

    unknown samples from plot of absorplion against

    ¡.¡g/mL

    IV. Sodium Selective £Iectrode Method 

    (SSE Me.hod) (7, 8)

    Apparatus and Reagents

    See 2.091(a)-(b) and (e)   pH    meter.-Model 701 Digital (available

    from Orion Research, lnc., Cambridge, MA

    02139), or equivalent.

    (d)   Eleetrodes.-Sodium   ion seleetive glass elec-

    trode and reference eleclrode Models 39278 and 

    39402 (Bcckman Instrumcnts, Inc., Fullerton, CA

    92634), or equivalent.

    (e)   Sodium   solutjOllS.-Stock SOllaioll,-IOOO flg

     Na/roL. Dissolve 2,5421 g pure NaCl in 800 ml

    water. Adjust to pH 10 wilh concentrated am-

    monium hydroxide and dilute lo 1 L. Workü¡g

    solutiolls.-(l) 500 ¡.¡g Na/mL. Transfer 100 ml

    stock solution to 250 ml beaker, add ca 50 ml

    water, and adjust to pH 10 with coneentrated  NH¡OH. Transfer to 200 ml volumetric flask,

    dilute lo volume with waler, and mix. (2) 100 ¡.¡g

     Na/mL. Transfer 50 ml 50lution 1 to 250 rol

     beaker, add ca 150 ml water, and adjust to pH 10

    with concen!rated NH40H. Transfer lo 250 rol

    volumelric flask, dilute to volume with water, and 

    mix. (3) 50 ¡.¡gNa/roL. Transfer 25 ml Solution 1

    to 250 ml beaker, add ca 175 ml water, and ad.

    Sample Oescriplion

    A rnurlate, 0.0.60, Magruder 1804cheCk s8mple

    B DAP, 18.46.0,fertilizer grade dium.

    monium phosphate

    e superphosphate, 0.20-0,lertillzer grade

    normal superphosphale

    O 19'19-19,Magruder I¡quid check sample

    E 12.}5-10,Magruder sol id check sample

    F   urea,   46.0-0,ferlilizer grade urea

    G 20.20.20, synlhetic sample, prepd with

    diammoniurn phosphate, potassium

    chloride, and sodium chloride.

    reagent grades

    H   same as  Sample G

    Approx.sodiumcontenl,

    %N.

    1.0

    0.1

     just to pH 10 with concenlraled NH,¡OH. Transfer 

    to 250 ml volumelric f1ask, dilule to volume wilh

    water, and mix. (4) 10 ¡.¡gNa/roL. Transfer 25 rol

    Solution 2 to 250 rol beaker, add ea 175 rol water,

    and adjus! lo pH 10 with concentrated NH,OH.

    Transfcr to 250 ml volumetric flask, dilule lo vol-

    ume with water, and mix. (5) 5 ¡.¡gNa/mL. Trans-

    fer 25 ml Solution 3 lo 250 ml beaker, add ca

    175 ml waler, and adjust to pH 10 with concen-

    !rated NH10H. Transfer to 250 ml volumetric

    f1ask, dilute to volume wilh waler, and mix. (6) 1

    ¡.¡g Na/ml.   Transfer 25 ml Solution 4 to 250 ml

     beakcr, add ca 175 ml water, and adjusl to pH JO

    wilh concentratcd NH,OH. Transfer to 250 ml

    volumetric f1ask, dilute to volume wilh water, and 

    mix.

    Preparation of Solulion

    Prepare solution as in 2.093(a), using sample

    containing ca 25 mg Na, in 250 ml beaker. After  boiling adjust lo pH 10 wilh NH,OH. Transf('r lo

    250 ml volumetric f1ask, dilute to volume wilh

    waler, mix, ami pass through dry filter.

    Determination

    Conlled Na and reference elcctrodes lo pH

    meter, place electrodes in low concentration Na

    solution, and warm IIp pH meter. Transfer    C.1   100

    ml stock, working, and unknown sample solulions

    into sep.1fale 250 ml I;.eakers. Place electrodes in

    each solution and while stirring wilh magnetic

    stirrer al constan! rate, read mV of the stock 

    working and unknown sample solutions. Rime

    and blol c1ectrodes between solutions. Plot Ihe mVrcadings (linear axis) against concentralion (Iog

    axis) on standard 3- or 4~cycle semilo¡¡;arithmic

     paper. Determine Na content of unknown samples

    from slandard curve.

    Results and Discussion

    The averages   D E    the 10 determinations madI"

    on eaeh s.lrnple with eaeh method, and the cor-

    rcsponding standard deviations and eoefficients

    o E    variation, are shown in Table 2. In general,

    the standard deviations for the 4 methods

    showed precisiom that are aeeeptahle, al-

    Ihough the F-Iest showed significanl s!atisticaidiffcrenecs in 50%   o E    thc total pairs that can

     be formed. Comparing the averages   by   mean"of the t-test showed signiricant statistical dif-

    ferences in 70% of the total pairs.

    Differences are evident between the aver-

    ages for the 2 versions of Ihe FES method, anJ

    this can only be attrihutcd to thc use of differ-

    cnt equipment and different Aame Ch.1file-

    teristics¡ thus, the AOAC official method need ••

    to be revised. In the Magruder report for 

    Sarnple 7804 (Sample A), the avcrage for tite

  • 8/17/2019 Ammonia-Selective Electrode Determination of Nitrogen in Fertilizers

    7/7

    COROMINA5 f.T   AL.:   J.   AS50C. orF. ANAL. CHEM. (VOL. 63, NO.   J,   1980)   553

    Table 2.   Comparative results lor the det••rmlnatlon 01!!Iodlum(%   Na) In 8 samples   01  ferUlizers

    Method    Melhod 

    Slatislic   1 1 1 1 1   IV   1 1   1 1 1   IV

    Sample A, Muriate   Sarnple B, Diamrnonium Phosphate

    Average   1.538 1.447   1. 449" 1. 809   0.080 0.09l"   0.098   0.111Std dev.   0.030 0.010   0.013   0.014 0.007 0.004   0.006 0.009Coer!.of 

    var.,  %   1.951 0.691   0.897 0.774   8.750 4.301   6.122 8.109

    Sample C, Normal Superphosphate   Sample D. 19.19.9

    Average   0.130   0.159 0.232"   0.211   0.602" 0.605   0.512 0.714Std dev.   0.008 0.008 0.004   o.on   0.007 0.009   0.008   0.027Coeff.ol

    var..  %   6.1S4   5.0]1   1. 724 6.161   1.167 1. 488 1.56]   ].782

    Sarnple E. 1l.15.1O   Sample F. Urea

    Average   0.200' 0.230"   0.173   0.260 NO'   0.00246 0.00103   0.0079Std dev.   0.008   0.007 0.004 0.005   0.00040 0.00013   0.0010Coell.ol

    var .•%   4.000   3.043 2.]12   1.9lJ   16.260   12.621 12.658

    Sample G. lO-lO.lO.  Synlhetle   Sample H. lO.20.20.  Synthetie

    Average   0.861~   1.312   1.108 0.790   0.133   0.117 0.119   0.084Std dev.   0.058 0.116   0.008 0.027   0.005 0.003   0. 000   0.004Coefl.ol

    var .•%   6.736 8.841   0.712   3.418   3.759 2.564   0.000   4.76l