alp solutions rbd physics eng

Upload: shubhamdubeysubhash

Post on 02-Jun-2018

247 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 ALP Solutions RBD Physics Eng

    1/27

    RIGID BODY DYNAMICS - 1

    TOPIC : RIGID BODY DYNAMICS

    PART - I

    1. Let m1= mass of the square plate of side 'a'

    and m2= mass of the square of side 'a/2'

    Then m1=

    2

    2

    a!"

    #$%

    &' ; m2= ( )

    2a' ; ('being the areal density)

    and m2m1= M.

    * + =-.

    -/0

    -1

    -23

    !"

    #$%

    &45

    2

    1

    21

    22

    4

    am

    6

    )2/a(m

    6

    am=

    -.

    -/0

    -1

    -23

    !"

    #$%

    &!

    "

    #$%

    &'4

    '5

    '2244

    4

    a.

    2

    a

    6

    )2/a(

    6

    a

    =./0

    123

    65

    65'

    164

    1

    616

    1

    6

    1a4 =

    ./0

    123

    6556

    '1216

    32)162(a4

    + =./0

    123

    6'

    1612

    27a4

    Also ; M =2a

    4

    11 !

    "

    #$%

    &5' * '= 2a

    M

    3

    4* + =

    ./0

    123

    6!

    "

    #$%

    &1612

    27a.

    a

    M

    3

    4 42 * + =

    16

    aM3 2

    2. M.I. about Ois2

    MR2

    By parallel-axis theorem2

    MR2= +cm+

    2

    2.3

    R4M !

    "

    #$%

    &7

    *+cm=22

    3

    R4.2M

    2

    MR!"

    #$%

    &7

    5

    3. From FBD

    Equation in horizontal direction

    T = Nx ...............(1)For Rotational equation about P

    T. 2 = 1.5 300T = 225 N

    Nx= 225 N

    Ny= 300 NAnd Ng = mg = 300 N

    PHYSICS SOLUTIONSADVANCE LEVEL PROBLEMS

    TARGET : JEE (IITs)

  • 8/11/2019 ALP Solutions RBD Physics Eng

    2/27

    RIGID BODY DYNAMICS - 2

    4.

    There is no slipping between pulley and thread.

    So, (a = 8r) ..........(i)For point mass :

    mg T = ma ...........(ii)Equation of torque for disc

    Tr = +.8

    Tr = 8.2

    mr2

    T =2

    mr8= !

    "

    #$%

    &2

    mg...........(iii)

    mg 2

    mg

    = ma

    mg =2

    mg3

    a =3

    g2.

    5.

    R

    R

    V

    2V2V

    2R

    x

    x =g

    R4v2

    g

    2R2v2 9

    :=

    g

    Rv16 2

    6.F sin 8

    F

    )8 Fcos 8

    mg

    f

    Rr

    (F sin 8+ N = mg)F cos 8 increased linear speed for pure rolling friction force acting leftward direction and thread winds.

    7. As ;

    * 150 >0= 180 > * >= 5/6 >0 Ans.

  • 8/11/2019 ALP Solutions RBD Physics Eng

    3/27

    RIGID BODY DYNAMICS - 3

    8. Impulse = change in momentum

    = P.2

    !=

    12

    m 2!.> (about centre of AB)

    * >=!m

    P6

    For ?= 27

    ; 2

    7= >t * t = >

    72 = p62

    m

    67 !

    * t = p12

    m!7

    9.

    ?

    G

    g sin?a

    Circular pipe is rest

    so g sin ?= a

    10. Cons. of ang. momentum about P gives

    MV2

    L=

    12

    )L2()M2( 2w *

    2

    V=

    3

    wL2

    w =L4

    V3Ans. (C)

    11. Rotation energy =2

    2

    1>+ += mK2

    linear energy =2mv

    2

    1K = gyration radius

    Total energy =2

    2

    1>+ + 2mv

    2

    1v = >R

    Frictional of its total energy associated with rotation.

    =22

    2

    mv2

    1

    mv2

    12

    1

    4

    >+=

    2222

    22

    RmmK

    mK

    >4>

    >= !

    !"

    #$$%

    &

    4 22

    2

    KR

    K

    12.* (A)

    2= (12 >

    2)

    Man covers 27angle relative to disc

    t

    27= >

    r= 12 >

    2

    (27= 12 >2t)

    >2t = !"

    #

    $%

    &7

    6

    Some time t angle taken by disc

    Ans.60 East of South 60 East of South

  • 8/11/2019 ALP Solutions RBD Physics Eng

    6/27

    RIGID BODY DYNAMICS - 6

    PART - II

    1.CM

    ! x

    >

    m

    12

    m 2

    CM

    !9+ += +

    CM+ mx2

    x =m

    CM+5+=

    m12

    m 2!5+

    x = m34.060

    79

    2. (i) x

    dx

    A

    B

    +AB

    = B 2dmx

    +AB

    = B!

    0

    3dxax = !!"

    #$$%

    &4

    a 4!.

    (ii)x

    dm

    dx

    xcm

    =

    B

    BQ

    0

    0

    2

    dxax

    dxax

    !

    = !"

    #$%

    &!

    3

    2

    2 /3!

    +cm

    dx

    +ABA

    B

    +AB

    = +cm

    + m

    2

    3

    2!"

    #$%

    &!

    +cm

    = +AB

    9

    m4 2!

  • 8/11/2019 ALP Solutions RBD Physics Eng

    7/27

    RIGID BODY DYNAMICS - 7

    m = B!

    0

    dxax =2

    a 2!

    +cm

    =9

    a2

    4

    a 44 !!5

    CCD

    E

    FFG

    H9+ 36

    a

    4

    cm

    !

    Ans.

    3. (a)

    For 2kg mass,

    T12g sin 45 = 2a ......(i)For 4kg mass

    4g sin45T2= 4a ............(ii)

    For pulley,

    r(T2T

    1) = +8= +(a/r) ............(iii) (+= !

    !"

    #$$%

    &

    2

    mr2

    )

    From eq. (i),(ii) and (iii)

    a =!

    "

    #$

    %

    & +44

    ?5

    2r24

    sing)24(

    a =

    !"

    #$%

    &44

    665

    01.0

    5.024

    52/110)24(.

    a = 0.248 = (0.25 m/s2).

    (b) m1= 4kg m

    2= 2kg

    I= 0.2 (between inclined plane and 2kg block)+= 0.5 kg-m2 r = 0.1 mm

    1gsin?T

    2= m

    1a .........(i)

    T1(m

    2gsin?+ Im

    2gcos?) = m

    2a .........(ii)

    r(T1T

    2) = +.8= !

    "#$

    %&+

    r

    a .........(iii)

    From eq. (i),(ii) and (iii)

    m1g sin?(m

    2g sin?+ Im

    2gsin?) + 2r

    a+= m

    1a + m

    2a

    Put values :

    4g sin45 (2g sin45 + 0.2 2g sin45) +01.0

    5.0a = 6a

    * 27.80(13.69 + 6.95) = 56a

    = a =567 = (0.125 m/s2).

  • 8/11/2019 ALP Solutions RBD Physics Eng

    8/27

    RIGID BODY DYNAMICS - 8

    4.

    N2sin 8= f (i)

    N1+ N

    2cos 8= mg (ii)

    Torque about point A

    ( N2cos 8) !

    "

    #$%

    &8tan

    b+ N

    2sin 8b = mg 2

    a cos 8 )

    N2=

    ( )b2

    sincosmga 88

    N2cos 8= ( )b2sincosmga 2 88

    From equn. ....(ii)

    N1= mg N

    2cos 8= mg

    b2

    sincosmga 2 88

    N1= mg

    b2

    )sincosab2( 2 88

    N2sin 8= IN

    1

    I=1

    2

    N

    sinN 8

    I =

    b2

    )sincosab2(mg

    b2

    sincosamg

    2

    2

    88

    88

    * I=CCD

    E

    FFG

    H

    88

    88

    sincosab2

    sincosa2

    2

    5.

    Ny

    mg

    C

    bb

    oNx C

    bb

    oNx C

    bb

    oNx C

    bb

    oNx C

    bb

    oNx C

    bb

    oNx C

    bb

    oNx

    mg 2/b = +8, + =6

    mb2+ m

    2

    2

    b!!"

    #$$%

    &

    ! I=6

    mb2+

    2

    mb2=

    2

    mb2 !

    "

    #$%

    &4

    3

    11

    += 3mb2

    2

  • 8/11/2019 ALP Solutions RBD Physics Eng

    9/27

    RIGID BODY DYNAMICS - 9

    Hence2

    mgb=

    3

    mb2 28!8=

    b22

    g3

    Accnof corner C = 22 bb 4 8= 2g3

    Acceleration of O in horizontal direction is zero So Nx= 0

    mg Ny= m 2

    b

    8

    = m2

    b !

    !"

    #$$%

    &

    b22

    g3 =

    4

    mg3

    = Ny=

    4

    mg

    6. (a)

    L

    21kxsin30 kxsin30

    30 30B

    A

    mg

    (i)

    Before cutting 2k xsin30 = mg

    kx = mg (T = kx = mg)After cutting(ii) Torque about COM

    (Tsin30) x 2

    !

    = +8

    4

    mg!= 8.

    12

    m 2!

    8= !"

    #$%

    &!

    g3(clockwise)

    (b)acceleration of point Ama

    x= T cos30

    ax=

    m2

    3mg=

    2

    g3= a

    AC@

    mg T sin30 = may

    mg 2

    mg= ma

    y

  • 8/11/2019 ALP Solutions RBD Physics Eng

    10/27

    RIGID BODY DYNAMICS - 10

    aAy

    = !"

    #$%

    &5

    2

    g+

    2

    !8=

    2

    g5 +

    2

    g3= (g) (J)

    aA= gji2

    3!!"

    #$$%

    &4

    (c) aBx= @g23

    aBy

    =22

    g !84!

    "

    #$%

    &= 2g ( K )

    aB= gj2i2

    3!!"

    #$$%

    &5

    (ii)

    kxsin30

    30

    kxsin30

    30

    12

    L/3 L/3 L/3

    mg

    Before cuttingmg = 2kx sin30 = kx = TT = mg.

    After cutting

    (a) Torque about COM

    (T sin30) !"

    #$%

    &6

    != +.8

    (mg) !"

    #$%

    &2

    1!

    "

    #$%

    &6

    != 8.

    12

    m 2!

    8= !"

    #$%

    &!

    g(cw).

    (b) (T cos30) = max

    mg 2

    3= max

  • 8/11/2019 ALP Solutions RBD Physics Eng

    11/27

    RIGID BODY DYNAMICS - 11

    ax= !

    !"

    #$$%

    &

    2

    g3

    aAx

    = )i(2

    g35

    mg 2

    ma

    = may

    ay=

    2

    g( j5 )

    aAy

    = (ay8

    2

    !) = !

    "

    #$%

    &2

    g !

    "

    #$%

    &2

    g !

    != 0

    !!"

    #$$%

    &59 ig

    2

    3aA"

    (c) ig2

    3a

    cx

    59"

    j22

    gacy !

    "

    #$%

    &8459

    !"

    = gj

    ac= a

    cx i + acyj = !!"

    #$$%

    &4 jgig

    2

    3.

    7.

    Angular momentum about point A

    Li= m

    1v

    s! (u

    s: Final velocity of ball after collision)

    L= 3

    m 22!

    >+ m1us!

    Li= L

    (m1v

    s!=

    3

    .m 22 >!+ m

    1u

    s!)

    2 5 =3

    2.18 >66b + (2 u

    s)

    10 =10

    32>+ 2u

    s............ (i)

    Coefficient of restitution

    e =s

    s

    v

    u5>!

  • 8/11/2019 ALP Solutions RBD Physics Eng

    12/27

    RIGID BODY DYNAMICS - 12

    0.8 =s

    s

    v

    u5>!

    5

    4=

    ( )5

    u2.1 s5>

    4 =5

    6>u

    s

    us= !

    "

    #$%

    & >5

    206............ (ii)

    Put equation (ii) in equation (i)

    10 =10

    32>+ 2 !

    "

    #$%

    & >5

    206

    10 =10

    32>+

    5

    4012>

    100 = 32>+ 24>80

    >=14

    45

    Put >in equation (ii)

    us= !

    "

    #$%

    & 5>5

    206

    us=

    5

    2014

    456 5!

    "

    #$%

    &

    us=

    514

    280270

    6=

    514

    10

    6= !

    "#$

    %&5

    7

    1

    So direction is (L) us !

    "

    #$%

    &7

    1

    8. (a)

    Let coordinates of instantaneous axis of rotation be P(x,y).

    then velocity of P w.r.t. C is zero.

    * 0ivCP 946>"

    * bt ( k ) 0iv]jyi)tvx[( 9445

    * x = vt

    and Myt = Vfrom these eliminating t

  • 8/11/2019 ALP Solutions RBD Physics Eng

    13/27

    RIGID BODY DYNAMICS - 13

    1x

    .v

    y9

    NM

    or xy =M

    2v

    * locus of P is a Hyperbola.

    (b) Here coordinate at point C = !"

    #$%

    &0,Nt

    2

    1 2

    = 0ivCP 946>"

    * 0itwjyi)tw2

    1x(k 2 94C

    D

    EFG

    H456> * x = 2tw

    2

    1

    >y = wt

    from these eliminating t,

    * x =2

    2

    yw

    w2

    1!"

    #$%

    &>* x =

    w2

    2>y2

    Eqn. of parabola.

    9. a = 8Rmg sin 300T = ma .........(1)

    or2

    mgT = ma .........(2)

    8=I

    !

    = 2

    2

    1

    TR

    MR

    8 =MR

    2T.........(3)

    Solving Equations (1), (2) and (3) for T, we get

    T =2

    1

    mM 2

    mgM

    4Substituting the value, we get

    T = !"

    #$%

    &2

    1

    ./0

    123

    4 (0.5)(2)2.8)(2)(0.5)(9

    = 1.63 N

    T = 1.63 N

    (ii) From Eq. (3) , angular retardation of drum

    8=

    MR

    2T=

    )2.0)(2(

    (2)(1.63)= 8.15 rad/s2

    or linear retardation of blocka = R8= (0.2) (8.15) = 1.63 m/s2

    At the moment when angular velocity of drum is

    >0= 10 rad/s

    The linear velocity of block will bev

    0= >

    0R = (10) (0.2) = 2 m/s

    Now, the distance (s) travelled by the block until it comes to rest will be given by

    s =2a

    v 02

    [ Using v2= v0

    2 2as with v = 0 ]

    = )63.1(2

    (2)2

    m or s = 1.22 m

  • 8/11/2019 ALP Solutions RBD Physics Eng

    14/27

    RIGID BODY DYNAMICS - 14

    10.

    Angular momentum conservation about A

    xO

    3R10

    mvR + mv !"

    #$%

    &5

    10

    R3R = 2mR2>

    v ' = 2

    v7.1

    *./0

    123

    !"

    #$%

    &9>

    R2

    v7.1'

    By Energy conservation

    2mv2

    1+

    2

    1+>2= mg 0.3 R +

    2

    1mv'2 +

    2

    1+>'2

    mv2= mg 0.3 R + mv'2

    v2= g 0.3 R +2

    2

    v2

    7.1!"

    #$%

    &

    vmin

    = gR3.07.1

    2

    11. Minimum velocity required by block mto complete the motion in gR5

    conserving mech. energy

    2

    1

    +>2= Mg . 2R

    * >= +

    MgR

    Cons. angular momentum wrt P before & after collision.

    +>= m.R gR5

    ++

    MgR= mR gR5

    MgR+= m2R25gR

    putting +=3

    ML2

    m

    M= 15

    Ans. : 15m

    M9

  • 8/11/2019 ALP Solutions RBD Physics Eng

    15/27

    RIGID BODY DYNAMICS - 15

    12. (i) L = Natural length of spring

    (ii)

    (a) By energy conservation from (i) to (ii)

    CD

    EFG

    H!"

    #$%

    &54>94> x

    2mgI

    2

    1kx

    2

    1I

    2

    1 21

    22 !............. (i)

    I = Icm

    + ,

    2

    x2

    !"

    #$%

    &5

    !

    I =12

    m 2!+ m

    2

    x2

    !"

    #$%

    &5

    !............. (ii)

    !"#$

    %& 549 Lyxx 22 ............. (iii)

    Put equation (ii) and (iii) in equation (i)

    !!

    "

    #

    $$

    %

    &!

    "

    #$%

    &54

    22

    x2

    m12

    m

    2

    1 !!>2+

    2/122 LyxK

    2

    1!"#$

    %& 54

    = !!

    "

    #

    $$

    %

    &!

    "

    #$%

    &54

    22

    x2

    m12

    m

    2

    1 !!>

    12+ mg !

    "

    #$%

    &5

    8x

    !

    x = 150 mm, y = 20 mm, != 450 mm, K = 300 N/m

    m = 3 kg, >= 4 rad/sec

  • 8/11/2019 ALP Solutions RBD Physics Eng

    16/27

    RIGID BODY DYNAMICS - 16

    Put all the data

    >1= 86

    3

    2rad/sec

    (b) rotating to 180 condition is

    This is like a initial condition so >2= >

    >2= 4 rad / sec

    13. Force moment relative to point O

    N"

    =dt

    Md"

    = tb2"

    Let the angle between M" and N"

    8= 45 at t = t0

    Then2

    1=

    NM

    N.M""

    =0

    40

    22

    20

    bt2tba

    )bta(

    4

    4"

    =

    0422

    30

    2

    bt2.tba

    tb2

    4=

    40

    22

    20

    tba

    bt

    4

    Solving, t0=

    b

    a(as t

    0cannot be nagative)

    Thereforeb

    ab2tb2N 0"""

    99

    14. 8= angular acceleration

    8= angular accelerationFor the plank

    F = m1>

    1....... (i)

  • 8/11/2019 ALP Solutions RBD Physics Eng

    17/27

    RIGID BODY DYNAMICS - 17

    For sphere torque about point C

    fr = Ic8=

    5

    2m

    2r28 ....... (ii)

    assuming >2is the acceleration of COM of sphere at point A

    (>1= >

    2+ 8r) ....... (iii)

    From equation (i), (ii) and (iii)

    >1=

    !"

    #$%

    &4 21 m

    7

    2m

    F and >2= !

    "#$

    %& >1

    72

    15.

    For cylinder

    Mg + T12T = Ma ......(i)

    Torque about axis of rotation

    2TR + T1(2R) = +O8= !

    "

    #$%

    &+

    R

    a. ....(ii) (a = 8R)

    For weight Amg T

    1= ma

    No slipping between pulleys and thread

    a1= a + 8(2R) = (3a) ....(iii)

    From equation (i), (ii) and (iii)

    --.

    --/

    0

    --1

    --2

    3

    !"

    #$%

    & +44

    49

    2

    1

    Rm9M

    g)m3M(3a

    16. Velocity of end A at the moment it strikes ground = gh2

    If velocity of COM of rod just after collision vPand angular velocityacquired by the rod is >clockwise as shown then using equationfor coefficient of restitutionvelocity of approach = velocity of sep. (applied at point A).

    gh2 = vP+2

    L>cos? .............(1)

    Angular momentum can be conserved about A justbefore collision & after collision as only impulsiveforce will be acting at A only.

    gh2 M2L cos?= +cm>MvP 2

    L cos? .............(2)

  • 8/11/2019 ALP Solutions RBD Physics Eng

    18/27

    RIGID BODY DYNAMICS - 18

    Putting value of >= ( gh2 vP)?cosL

    2

    from (1)

    gh2 M.2

    Lcos?=

    12

    ML2( gh2 vP)

    ?cosL2

    MvP2

    Lcos?

    ?cos6L

    vP+ 2 vcosL P? = ?cos6 gh2L 2gh2 Lcos?

    vPCCD

    E

    FFG

    H

    ??4

    cos6

    cos31 2

    =?

    ?5cos6

    )cos31( 2

    gh2

    vP= !!"

    #$$%

    &

    4?5

    cos31

    cos1 2

    gh2

    COM will of at maximum height when its velocity becomes zero during upward motion.O = vP22g H

    H =g2

    v

    2

    P =

    2

    2

    2

    cos31cos31 !!

    "#$$

    %&

    ?4?5 h.

    [ Ans.: H = 1 3

    1 3

    2

    2

    2

    5

    4

    &

    %$

    #

    "!

    cos

    cos

    ?

    ?h; h =

    49

    144

    7!]

    17. NC+ N

    B= 250

    NBx = 250 3

    NB=

    x

    750

    f1=

    x750 I

    f2= IC

    D

    EFG

    H4 25

    x

    750

    workdone against friction

    W = B Q4Q dx)( 21 = dx5.73.0x1500

    5.4

    3

    B !"#

    $%

    &46 = 450 ! n

    2

    3+ 7.5 (4.5 3)

    = 450 0.41 + 7.5 1.5

    2

    1mv2 = 400 1.5 195.75

    v2= (600 195.75) 5.2

    2

    =161.7 2 = 323.4v = 18.52 m/sec.

  • 8/11/2019 ALP Solutions RBD Physics Eng

    19/27

    RIGID BODY DYNAMICS - 19

    18. ? is very small? R 0

    T

    w/2

    AN2

    PN1

    TIN1

    A?IN2

    b

    a

    Force balance in horizontal direction

    N1= N

    2

    balancing torque about point P

    For ? to be very small we can directly write

    T.b + IN2b 2Wb

    N2a = 0

    Force in y direction if acceleration of windows is A

    w IN1IN

    2T =

    g

    wA... (ii)

    For block

    T 2

    W=

    g2

    WA

    T = !!"

    #$$%

    &4

    g2

    WA

    2

    W.... (iii)

    Put equation (iii) in equation (i)

    2

    Wb +

    g2

    WAb + IN

    1b = N

    1a +

    2

    Wb

    g2

    WAb= N

    1(aIb)

    N1=

    ./0

    123

    I5 )ba(g2WAb

    ..... (iv)

    Put N1

    and T in equation (ii)

    W 2I !!"

    #$$%

    &

    I5 )ba(g2WAb

    2

    W g2

    WA= g

    WA

    2

    W )ba(g

    WAb

    I5I

    = g2

    WA3

    1 )ba(g

    Ab2

    I5I

    =g

    A3

    g (a Ib) = (2Ib + 3a 3Ib)A

    A = )ba3(

    g)ba(

    I5

    I5Ans.

  • 8/11/2019 ALP Solutions RBD Physics Eng

    20/27

    RIGID BODY DYNAMICS - 20

    19. After collision, let COM move by velocity vP andsystem starts rotating by angular velocity >about COM.Using cons. of linear momentum

    mv0= 3mvP * vP=

    3

    v0

    conserving angular momentum about COM

    mv0.

    32

    a= +> = !

    !

    "

    #

    $$

    %

    &6 3

    3

    ma2

    .>

    = ma2>

    >=a32

    v0

    (a) Time to complete half revolut ion.

    t =>7

    =0v

    a32 7

    (b) Particle B completes half cycle during this duration. It s position const. COM in

    shown.

    Disp. of B in x-direction = Disp. due to linear motion of COM

    + Disp. due to Angular motion.

    xB=

    3

    v0.t + MN

    =3

    v0.

    0v

    a32 7+

    3

    a2. cos30 =

    3

    2a7+ a

    Disp. in Y-direction

    YB=

    3

    a2cos60 =

    3

    a

    Total displacement = 2B

    2B yx 4

  • 8/11/2019 ALP Solutions RBD Physics Eng

    21/27

    RIGID BODY DYNAMICS - 21

    20. >

    f

    A

    f = Img

    Torque about A

    R(Img) = 8:2

    mR2

    89IR

    g2

    8966

    R

    1025.02

    8= !"

    #$%

    &R

    5

    at constant angular speed

    >= !"

    #$%

    &R

    v

    )n2(2R

    v2

    789!"

    #$%

    &

    n =76

    69!

    !"

    #$$%

    &

    87 .R.54

    1818

    R4

    v2

    2

    n = !

    "

    #$

    %

    &

    7

    6

    .R.20

    1818=

    7666

    653

    107520

    1818

    n =766

    667520

    101818 3= !

    !"

    #$$%

    &

    67666

    2020

    10186 3

    n = !"

    #$%

    &67

    66

    2

    4186

    n =77636

    =7

    216

    Number of revolutions executed by the disk before it comes at constant angular velocity n = !

    "

    #$

    %

    &

    7

    216.

    21.a

    2

    f2

    m

    8

    Friction on plate due to ground f1= 7.5 0.2 10 = 15

    25 15 f2= 1.5 a

    1

    f2= 6a

    2

    10 = 1.5 a1+ 6a

    2....(i)

    f2. r = mr . 8* f2= ma

    2...(ii)

  • 8/11/2019 ALP Solutions RBD Physics Eng

    22/27

  • 8/11/2019 ALP Solutions RBD Physics Eng

    23/27

  • 8/11/2019 ALP Solutions RBD Physics Eng

    24/27

  • 8/11/2019 ALP Solutions RBD Physics Eng

    25/27

    RIGID BODY DYNAMICS - 25

    or MgR !"

    #$%

    &4

    Mg !

    "

    #$%

    &2

    R=

    8

    Mv2+

    2

    1!!"

    #$$%

    &66

    442

    1 2RM

    2

    R/2

    v!"

    #$%

    &

    or8

    7MgR =

    16

    3Mv2

    = v = 3Rg14

    26. When F is maximum equation. of rotational equilibrium.F.R. = (N

    1+ N

    2) R .............(1)

    For equilibrium in horizontal direction

    f1= N

    2= N

    1............(2)

    In vertical directionF + N

    1= mg

    F = [(mg F) + (mg F)]

    2

    1 C

    D

    EFG

    H545 )Fmg(

    2

    1)Fmg( C

    D

    EFG

    H9

    2

    1putting C

    D

    EFG

    H9 ijj[kus

    2

    1

    F CD

    EFG

    H44

    2

    1

    2

    11 =

    4

    3mg

    F =8

    3mg =

    8

    3w

    [ Ans.: 3w/8 ]

    27. As fly moves to other end C.M must remains at same position so straw shifts left.

    Torque about AB is balanced

    2mg !"

    #$%

    &3

    != (m + m

    A)g !

    "

    #$%

    &6

    !

    4m = m + mA

    mA= 3m

  • 8/11/2019 ALP Solutions RBD Physics Eng

    26/27

    RIGID BODY DYNAMICS - 26

    28. (a) 2mg 2

    Lmg

    2

    LT

    4

    L= 0

    T = 2mg Ans.

    (b) NP= 6mg Ans.

    (c) 2mg 2

    Lmg

    2

    L

    = (2m 4

    2!

    + m 4

    2!

    +12

    m2)8x

    = mg2

    !=

    x22

    12

    m

    4

    m38!

    !"

    #$$%

    &4

    !!

    =2

    mg!=

    12

    m10 2!8

    8=!10

    g6=

    !5

    g3Ans.

    (d) 22

    12

    m10

    2

    1>6

    != 2mg

    2

    !mg

    2

    !

    =2

    2

    12

    m10

    2

    1>6

    !=

    2

    mg!, >2=

    !10

    g12

    !5

    g6

    >=!5

    g6 , v =

    2

    !> =

    !

    !

    5

    g6

    2Ans.

    29. System is free to rotate but not free to translate. During collision, net torque of the system ( rod A + rod B +mass m ) about point P is zero.

    Therefore, angular momentum of system before collision = Angular momentum of system just after collision.( About P ). Let >be the angular velocity of system just after collision, then

    Li

    = Lf

    * mv (2l) = !>Here, ! = moment of inertia of system about P

    = m (2!)2+ mA (!2 / 3 ) + m

    B T

    CCD

    E

    FFG

    H4$

    %

    &4 2

    2

    )212

    !!!

    Given : != 0.6 m, m = 0.05 kg, mA = 0.01 kg and m

    B= 0.02 kg

    Substituting the values, we get

    I = 0.09 kgm2

    Therefore, from Eq. (1)

    >=I

    !2mv=

    09.0

    )6.0)()(05.0)(2( v

    >= 0.67 v ........(2)Now after collision, mechanical energy will be conserved.

    Therefore, decrease in rotational KE = increase in gravitational PE

    or2

    1I> U= mg (2!) + m

    Ag !

    "

    #$%

    &2

    !+ m

    Bg !

    "

    #$%

    &4

    2

    !!

    or >2 =Immg A )m34( B44!

  • 8/11/2019 ALP Solutions RBD Physics Eng

    27/27

    =( )

    09.0

    )02.0301.005.04(6.0)8.9( 6446

    = 17.64 (rad /s)2

    = >= 4.2 rad/s .........(3)Equating Eqs. (2) and (3) , we get

    v = sm/

    0.67

    4.2

    or v = 6.3 m/s

    30. torque about Q point is balaned so

    Pc = mg b

    P = !"

    #$%

    &c

    bmg

    N = mg

    f = P for no sliding

    Img = PP

    max= (Img)

    Cmax

    =P

    bmg= mg

    bmg

    I = !!"

    #$$%

    &Ib

    31. (i) In the limiting case normal reaction will pass through O. The cube will tip about O if torque of

    Fabout O exceeds the torque of mg.

    Hence !"

    #$%

    &V!

    "

    #$%

    &2

    amg

    4

    a3F

    or mg3

    2FV

    therefore, minimum value of F is32 mg.

    a/2

    N

    F

    3a/4

    O

    mg

    fr

    (ii) In this case since it is not acting at COM, toppling can occur even after body started sliding

    because of increasing the the torque of F about COM.hence Imin

    = 0,

    (iii) Now body is sliding before toppling, O is not I.A.R., torque equation can not be applied across

    it. It can now be applied about COM.

    F4

    a= N

    2

    a................ (1)

    N = mg .......................... (2)

    from (1) and (2)

    F = 2 mg

    (iv) F >3

    2mg ................... (1) (from sol. (i))

    N = mg .......................(2)

    F = sN =

    smg ........... (3) from (1) and (2)

    s=

    3

    2