alan frieze [email protected] charalampos (babis) e. tsourakakis [email protected] waw...

37
On Certain Properties of Random Apollonian Networks http://www.math.cmu.edu/~ctsourak/ran.html Alan Frieze [email protected] Charalampos (Babis) E. Tsourakakis [email protected] WAW 2012 22 June ‘12 WAW '12 1

Upload: scott-murphy

Post on 25-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 1

On Certain Properties of Random Apollonian

Networks http://www.math.cmu.edu/~ctsourak/ran.html

Alan Frieze [email protected] Charalampos (Babis) E. Tsourakakis

[email protected]

WAW 2012 22 June ‘12

Page 2: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 2

Outline

Introduction Degree Distribution Diameter Highest Degrees Eigenvalues Open Problems

Page 3: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 3

Motivation

Internet Map [lumeta.com]

Food Web [Martinez ’91]

Protein Interactions [genomebiology.com]

Friendship Network [Moody ’01]

Page 4: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 4

Motivation

Modelling “real-world” networks has attracted a lot of attention. Common characteristics include: Skewed degree distributions (e.g., power

laws). Large Clustering Coefficients Small diameter

A popular model for modeling real-world planar graphs are Random Apollonian Networks.

Page 5: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 5

Problem of Apollonius

Apollonius(262-190 BC)

Construct circles that are  tangent to three given circles οn the plane. 

Page 6: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 6

Apollonian Packing

Apollonian Gasket

Page 7: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 7

Higher Dimensional Packings

Higher Dimensional (3d) Apollonian Packing. From now on, we shall discuss the 2d case.

Page 8: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 8

Apollonian Network

Dual version of Apollonian Packing

Page 9: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 9

Random Apollonian Networks

Start with a triangle (t=0). Until the network reaches the

desired size Pick a face F uniformly at random, insert

a new vertex in it and connect it with the three vertices of F

Page 10: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 10

Random Apollonian Networks

For any Number of vertices nt =t+3 Number of vertices mt=3t+3 Number of faces Ft=2t+1

Note that a RAN is a maximal planar graph since for any planar graph

Page 11: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 11

Outline

IntroductionDegree Distribution Diameter Highest Degrees Eigenvalues Open Problems

Page 12: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 12

Degree Distribution

Let Nk(t)=E[Zk(t)]=expected #vertices of degree k at time t. Then:

Solving the recurrence results in a power law with “slope 3”.

Page 13: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 13

Degree Distribution

Zk(t)=#of vertices of degree k at time t,

For t sufficiently large

Furthermore, for all possible degrees k

Page 14: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 14

Simulation (10000 vertices, results averaged over 10 runs, 10 smallest degrees shown)

Degree Theorem Simulation

3 0.4 0.3982

4 0.2 0.2017

5 0.1143 0.1143

6 0.0714 0.0715

7 0.0476 0.0476

8 0.0333 0.0332

9 0.0242 0.0243

10 0.0182 0.0179

11 0.0140 0.0137

12 0.0110 0.0111

Page 15: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 15

Outline

Introduction Degree DistributionDiameter Highest Degrees Eigenvalues Open Problems

Page 16: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 16

Diameter

Depth of a face (recursively): Let α be the initial face, then depth(α)=1. For a face β created by picking face γ depth(β)=depth(γ)+1.

e.g.,

Page 17: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 17

Diameter

Note that if k* is the maximum depth of a face at time t, then diam(Gt)=O(k*).

Let Ft(k)=#faces of depth k at time t. Then, is equal to

Therefore by a first moment argument k*=O(log(t)) whp.

Page 18: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 18

Bijection with random ternary trees

Page 19: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 19

Bijection with random ternary trees

Page 20: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 20

Bijection with random ternary trees

Page 21: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 21

Bijection with random ternary trees

Page 22: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 22

Bijection with random ternary trees

Page 23: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 23

Bijection with random ternary trees

Page 24: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 24

Diameter

Broutin Devroye

Large Deviations for the Weighted Height of an Extended Class of Trees.Algorithmica 2006

The depth of the random ternary tree T in probability is ρ/2 log(t) where 1/ρ=η is the unique solution greater than 1of the equation η-1-log(η)=log(3).

Therefore we obtain an upper bound in probability

Page 25: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 25

Diameter

This cannot be used though to get a lower bound:

Diameter=2,Depth arbitrarily large

Page 26: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 26

Outline

Introduction Degree Distribution Diameter Highest Degrees Eigenvalues Open Problems

Page 27: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 27

Highest Degrees, Main Result

Let be the k highest degrees of the RAN Gt where k=O(1). Also let f(t) be a function s.t. Then whp

and for i=2,..,k

Page 28: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 28

Proof techniques

• Break up time in periods • Create appropriate

supernodes according to their age.

• Let Xt be the degree of a supernode. Couple RAN process with a simpler process Y such that

Upper bound the probability p*(r)= • Union bound and k-th moment

arguments

𝑡 0=log log ( 𝑓 (𝑡 )) 𝑡1=log ( 𝑓 (𝑡 )) 𝑡

Page 29: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 29

Outline

Introduction Degree Distribution Diameter Highest Degrees Eigenvalues Open Problems

Page 30: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

30

Eigenvalues, Main Result

Let be the largest k eigenvalues of the adjacency matrix of Gt. Then whp.

Proof comes for “free” from our previous theorem due to the work of two groups:

WAW '12

Chung Lu Vu

Mihail Papadimitriou

Page 31: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

31

Eigenvalues, Proof Sketch

WAW '12

𝑡 0=0 𝑡1=𝑡1 /8

𝑡

S1

𝑡 2=𝑡9/16

S2 S3

…. ….

….

Star forest consisting of edges between S1 and S3-S’3 where S’3 is the subset of vertices of S3 with two or more neighbors in S1.

Page 32: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 32

Eigenvalues, Proof Sketch

Lemma: This lemma allows us to prove that in

F

…. ….

….

Page 33: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 33

Eigenvalues, Proof Sketch

Finally we prove that in H=G-F

Proof Sketch First we prove a lemma. For any ε>0

and any f(t) s.t. the following holds whp: for all s with for all vertices then

Page 34: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 34

Eigenvalues, Proof Sketch

Consider six induced subgraphs Hi=H[Si] and Hij=H(Si,Sj). The following holds:

Bound each term in the summation using the lemma and the fact that the maximum eigenvalue is bounded by the maximum degree.

Page 35: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 35

Outline

Introduction Degree Distribution Diameter Highest Degrees Eigenvalues Open Problems

Page 36: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 36

Open Problems

Conductance Φ is at most t-1/2 .Conjecture: Φ= Θ(t-1/2)

Are RANs Hamiltonian?Conjecture: No Length of the longest path? Conjecture: Θ(n)

Page 37: Alan Frieze af1p@random.math.cmu.edu Charalampos (Babis) E. Tsourakakis ctsourak@math.cmu.edu WAW 2012 22 June ‘12 WAW '121

WAW '12 37

Thank you!