aeroelasticity & experimental · pdf fileaeroelasticity & experimental aerodynamics...

74
Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 1 Vortex Induced Vibrations T. Andrianne 2016-2017

Upload: truongcong

Post on 30-Mar-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Aeroelasticity & Experimental Aerodynamics (AERO0032-1)

Lecture 1 Vortex Induced Vibrations

T. Andrianne

2016-2017

Page 2: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Aeroelasticity

= Study of the interaction of inertial, structural and aerodynamic forces

Applications on aircrafts, buildings, surface vehicles etc.

Inertial Forces

Structural Forces Aerodynamic Forces

Dynamic Aeroelasticity

Structural dynamics Flight Dynamics

Static Aeroelasticity

Collar’s  triangle  

1

Page 3: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Bluff-body aeroelasticity •  Vortex Induced Vibration •  Galloping

Airfoil/wing aeroelasticity •  Divergence •  Flutter •  Practical methods •  Flight flutter testing

Scope of the course

2

Page 4: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Organization of the course

3

L1   Vortex  Induced  Vibra2on   22-­‐Sep  L2   Galloping   29-­‐Sep  Lab1   Lab  session  -­‐  Vortex  Induced  Vibra2on   6-­‐Oct  Lab2   Lab  session  -­‐  Galloping   13-­‐Oct  L3   Introduc2on  -­‐  Equa2ons  of  mo2on   20-­‐Oct  L4   Dynamic  aeroelas2city   27-­‐Oct  M1   Matlab  session  -­‐  FluJer   3-­‐Nov  L5   Unsteady  aerodynamics   10-­‐Nov  L6   Prac2cal  aeroelas2city   17-­‐Nov  M2   Matlab  session  -­‐  p-­‐k  method   24-­‐Nov  L7   Flight  fluJer  tes2ng   1-­‐Dec  Lab3   Lab  session  -­‐  FluJer  tes2ng   8-­‐Dec  Q&A   Q&A  session   15-­‐Dec  

Page 5: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Flow  visualiza2on  of  vor2ces  shed  behind  a  cylinder  

4  

VIV

Vortices …

Page 6: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Vortex-­‐induced  vibra2ons    

5  

VIV

… induce vibrations

Page 7: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Today’s lecture

Dimensional analysis Examples of VIV Flow around static cylinders Effect of a prescribed motion of the cylinder Free vibration: VIV Modelling VIV Lock-in mechanism

6

Page 8: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Today’s lecture

Dimensional analysis Examples of VIV Flow around static cylinders Effect of a prescribed motion of the cylinder Free vibration: VIV Modelling VIV Lock-in mechanism

7

Page 9: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Dimensional analysis

Non-dimensional variables •  Geometry = length / width

•  Dimensionless amplitude vibration amplitude / diameter

•  Reduced velocity

8

lD

AD

Ur =U∞

fD

m U∞

D U∞

f

Large Ur à Quasi-steady assumption Small Ur (< 10) à Strong fluid-structure interaction

A

Page 10: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Dimensional analysis

•  Mass ratio = susceptibility of flow induced vibrations mS = mass (p.u. length) of the structure [kg/m] ρ = fluid density [kg/m3]

•  Reynolds number = inertial / viscous forces

ν = kinematic viscosity of the fluid [m2/s] à Measure of the boundary layer thickness à Measure of the transition between laminar and turbulent flows

•  Mach number = tendency of the flow to compress

when it encounters a structure In this course : incompressible flows à Ma < 0.3 9

mr =mS

mF

=mS

ρπD2 / 4

Re =U∞Dν

Ma =U∞c

Page 11: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Dimensional analysis

•  Damping factor (classically)

When Fluid-Structure interactions are concerned à “reduced damping” or Scruton number

10

ηS =energy dissipated per cycle

4π × total energy of the structure

m

YN YN ln YN /YN+1( ) = 2πηS

(linear system)

≈ mr ×ηS

Page 12: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Source FIV1977

Dimensional analysis

Motion of a linear structure in a subsonic, steady flow Described by :

11

•  Geometry •  Reduced velocity

•  Dimensionless amplitude

•  Mass ratio

•  Reynolds number

•  Damping factor

lD

AD

Ur

mr

Re

ηS

→ AD = F l

D,Ur, Re,mr,ηS( )

VIV Galloping (Lecture 2)

Page 13: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Today’s lecture

Dimensional analysis Examples of VIV Flow around static cylinders Effect of a prescribed motion of the cylinder Free vibration: VIV Modelling VIV Lock-in mechanism

12

Page 14: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

VIV examples – in air

•  Bridges

•  Chimneys

•  High rise buildings

13

Great-Belt bridge (Denmark)

Burj Khalifa (Dubai)

Page 15: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

VIV examples – in water / 2 phases flows

•  Risers •  Heat exchangers

14

source : Imperial college

source : Sandvik

Page 16: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

VIV examples : Great-Belt bridge

15

(Larsen 2000)

Unacceptable VIV motion (~ 40cm) during final construction stage at low (and frequent) wind speeds (~8m/s)

Page 17: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

VIV examples : Great-Belt bridge

16

(Larsen 2000) (Frandsen 2001)

Page 18: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

From 3D to 2D

•  Vortex shedding is essentially a 3D phenomenon à Flow components in the Z-direction à Geometric variation of the structure à Dynamic behaviour of the structure •  2D analysis as a starting point to understand VIV :

Even on 3D structures, 2D approaches are carried out (flow visualization, load analysis)

•  A/D >> à 2D dominated

17 Sumer 2006

Structural motion takes the control of aerodynamics

Page 19: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Dimensional analysis

Motion of a 2D linear structure in a subsonic, steady flow Described by : Other parameters: •  Surface roughness of the structure (for rounded shapes) •  Turbulence intensity of the upstream flow

à Effect on the wake, hence of the lift and on the VIV 18

→ AD = F Ur, Re,mr,ηS( )

m U∞

D

Great Belt bridge

Page 20: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Today’s lecture

Dimensional analysis Examples of VIV Flow around static cylinders Effect of a prescribed motion of the cylinder Free vibration: VIV Modelling VIV Lock-in mechanism

19

Page 21: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Viscous effects à Flow separation

Flow around a static cylinders

Lifting cylinder (potential flow theory)

20

Cp =1− 4sin2θ +

2ΓsinθπRV∞

2πRV∞

$

%&

'

()

2*

+,,

-

.//

cl =ΓRV∞

à Steady lift force à No drag (D’Alembert Paradox)

Page 22: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Flow around a static cylinders

21

Transition to turbulence Increasing Re = inertial / viscous forces

Creeping flow : vorticity created in the BL is totally dissipated near the body

Effect of viscosity in the vicinity of the body. Large amount of viscosity not dissipated near the body

Page 23: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Flow around a static cylinders How vortex shedding appears ?

22

•  Flow speed outside wake is much higher than inside •  Vorticity gathers in upper and lower layers •  Induced velocities (due to vortices) causes this perturbation to amplify

à  Origin of the vortex shedding process = shear layer instability (purely inviscid mechanism)

Vortex shedding = global instability : the whole wake is affected = robust : vorticity is continuously produced @ a well defined frequency (see Strouhal)

Flow separation

Page 24: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Flow around a static cylinders

23

Strouhal number fVS = shedding frequency D = cross dimension U∞ = free stream velocity à Linear dependency of the shedding frequency

with free stream velocity

à St ~ cste in a limited range of Reynolds numbers !

St ≡ fVSDU∞

0 5 10 15 20 25 300

200

400

600

U∞

f Sf VS  

Page 25: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Aerodynamic forces à  Impact of the shed vortices on the aerodynamic forces à  Lift force varies at fVS

à  Drag force varies at ~ 2 fVS

Sumer  2006  

Flow around a static cylinders

24

L  

D  

Page 26: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Aerodynamic forces •  Lift coefficient is an image of the fluctuating vorticity in the wake

(where the dominant frequency is fVS)

à CL(t) is characterized by fL and CLrms

à Dimensionless Strouhal number

•  Drag coefficient : typically fD ~ 2 fVS

Flow around a static cylinders

25

CL (t) = L(t)1 / 2ρU∞

2D= 2CL

rms sin(ωLt) = 2CLrms sin(St 2πU∞

Dt)

CD (t) = D(t)1 / 2ρU∞

2D= 2CD

rms sin(ωDt) = 2CDrms sin(2ωLt) = 2CD

rms sin(2 St 2πU∞

Dt)

St = fLDU∞

Page 27: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Flow around a static cylinders

26

CL (t) = L(t)1 / 2ρU∞

2D= 2CL

rms sin(ωLt)

= 2CLrms sin(St 2πU∞

Dt)

CD (t) = D(t)1 / 2ρU∞

2D= 2CD

rms sin(ωDt) = 2CDrms sin(2ωLt)

= 2CDrms sin(2 St 2πU∞

Dt)

Strongly Reynolds dependent !

Aerodynamic forces

FIV2011

Page 28: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Today’s lecture

Dimensional analysis Examples of VIV Flow around static cylinders Effect of a prescribed motion of the cylinder Free vibration: VIV Modelling VIV Lock-in mechanism

27

Page 29: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Oscillating cylinder

à Cylinder forced to move

Imposed motion :

A = Amplitude ff = Forcing frequency

Remember : Re has also a strong effect on the shedding process à  Effect of the motion of the cylinder, for a given Re range.

We can observe: Change in the flow pattern and in the shedding frequency

28

y(t) = Asin(2π f f t)

 Order  of  magnitude  of  the  diameter  (D)                                            à  A/D  ~  1  

Varying  around  the  sta2c  cylinder  shedding  frequency  (fVS0)  

   à        0<  ff/fVS0  <  2  

fVS0  =  vortex  shedding  frequency  that  would  be  observed  with  cylinder  at  rest    (i.e.  following  the  Strouhal  rela2on)  

Page 30: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Oscillating cylinder : Patterns

•  Limited range of forcing frequency and amplitude: à Two single vortices (“2S mode”)

•  Higher forcing frequencies and amplitudes:

à Two pairs of vortices (“2P mode”) •  Even higher frequencies and amplitudes : non-symmetric “P+S mode”

 

29

Williamson  2004  

Page 31: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Oscillating cylinder : Frequency

Around ff / fVS0 ~ 1 à No change in pattern

à But effect on the shedding frequency fVS

i.e. fVS does not follow anymore the Strouhal relation

30

fVS  /fVS0  

ff  /fVS0  1  

1  

fVS  =  ff  

For a given Reynolds number and amplitude of imposed motion (A) ff is increased fVS is measured Around ff / fVS

0 ~ 1 à fVS = ff = Lock-in phenomenon

(wake capture) !! Different from lock-in in VIV !!

St = fVSDU∞

Page 32: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

FIV2011  

Oscillating cylinder : Frequency

Lock-in range mainly depends on the imposed amplitude (ratio A / D) A/D ì à Range ì

31

Page 33: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Oscillating cylinder : Lift force

Imposed motion: à The resulting lift force L(t) is not necessarily harmonic

(idem static cylinder)

But through a standard Fourier analysis, it can approximated by

= component of lift @ the forcing frequency (ff) Driving parameters: A/D and ff /fVS

0 à L0(A/D, ff /fVS0) and φ(A/D, ff /fVS

0)

Three different representations of the lift force : 1.  Modulus and phase 2.  Phased lift coefficients 3.  Inertia and drag coefficients

32

y(t) = Asin(2π f f t)

L(t) = L0 sin(2π f f t + ϕ )

Page 34: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Oscillating cylinder : Lift force 1.  Modulus and phase 2.  Phased lift coefficients 3.  Inertia and drag coefficients

33

CL (t) =CL sin(2π f f t + ϕ )

modulus phase

à both function of A/D and ff /fVS0

ff /fVS0

.5

1

CL for A/D = 0.5

2

3

4

5

0 .75 1 1.25 1.5 1.75

adapted from Carberry et al. (2005) ff /fVS

0 .5

-90

ϕ

0

90

180

270

-180 .75 1 1.25 1.5 1.75

A/D 0

max CL( )CL (A = 0)

for ff /fVS0 = 1

1

2

0 .5 1 1.5 2

Page 35: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Oscillating cylinder : Lift force 1.  Modulus and phase 2.  Phased lift coefficients 3.  Inertia and drag coefficients

34

CL (t) = CL cosϕ( )sin(2π f f t)+ CL sinϕ( )cos(2π f f t)

à both function of A/D and ff /fVS0

ff /fVS0

.5

for A/D = 0.5

0

1

.75 1 1.25 1.5 1.75 adapted from Sarpkaya (1979)

ff /fVS0

.5

0

1

.75 1 1.25 1.5 1.75

in phase with (and - ) Conservative forces

y !!y in phase with Non-conservative forces à might lead to positive or

negative work

!y

CL cosϕ CL sinϕ

y(t) = Asin(2π f f t)

Page 36: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Oscillating cylinder : Lift force 1.  Modulus and phase 2.  Phased lift coefficients 3.  Inertia and drag coefficients

35

CL (t) = −ρ πD2

4"

#$

%

&'CM !!y−

12ρDCD !y !y

adapted from Sarpkaya (1979)

Inertia coefficient (added mass) Link with modulus :

Drag coefficient

CM =CL cosϕUr2

2π 3 y0 D( )

As expected for Ur à 0, CM à 1 (motion in still fluid)

Page 37: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Today’s lecture

Dimensional analysis Examples of VIV Flow around static cylinders Effect of a prescribed motion of the cylinder Free vibration: VIV Modelling VIV Lock-in mechanism

36

Page 38: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Free vibration: VIV Consider a single dof system : a simple linear oscillator Remember from the dimensional analysis : In the case of free vibration, special interest for : fS = frequency of the free motion ( ‘S’ stands for Structural) fS0 = frequency of the free motion (in still fluid, i.e. U∞ = 0) A = amplitude of the free motion fVS = frequency of the vortex shedding process (with motion)

37

m U∞

D

AD = F Ur, Re,mr,ηS( )

→AD, fSfS0 ,fVSfS0

"

#$

%

&'= F Ur, Re,mr,ηS( ) Ur =

U∞

fS0D

with fS0 independent of U∞ (but not of the fluid properties)

Structural part

Fluid part

Page 39: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Free vibration: VIV Fixed structural parameters : D, fS0, mr, and η Fixed fluid properties : ν, ρ

38

AD, fSfS0 ,fVSfS0

!

"#

$

%&= F Ur, Re,mr,ηS( )

Airspeed effect (U∞)

For small variations of U∞ in a Re range à Neglecting the Re effect

à Ur only

FSI2011

Frequency of motion Frequency of vortex shedding

Page 40: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Free vibration: VIV

39

FIV1977  FSI2011    

Amax    Lock-­‐in  range  

in  WATER  

in  AIR  

Page 41: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Free vibration: VIV Two key quantities to characterize VIV (practical interest) : •  Amax : max amplitude of the y motion, reached at Ur=1/St •  Lock-in range : also occurs around Ur=1/St From the dimensional analysis :

40

AD, fSfS0 ,fVSfS0

!

"#

$

%&= F Ur, Re,mr,ηS( )

→AMaxD,Lockin Ur( )

"

#$%

&'= F Re,mr,ηS( )

à Neglecting the Re effect

à mr and ηS only

à Scruton number ( ~ reduced damping) Sc = π2(1+mr )ηS

à Skop-Griffin number : SG = 4π 2St2Sc

Page 42: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Free vibration: VIV Amax = Function(SG) Lock-in range = Function(SG)

41

à Amax < 1 or 2 diameters (even for very low mass-damping combination)

à  Amax ~ 0 for heavy/damped structures à  Lock-in range ì if SG î

à  VIV = Self-limited phenomenon

Page 43: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Today’s lecture

Dimensional analysis Examples of VIV Flow around static cylinders Effect of a prescribed motion of the cylinder Free vibration: VIV Modelling VIV Lock-in mechanism

42

Page 44: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV Objective of the model : à  Estimation of Amax and Lock-in range in a given Re range (Critical airspeed from the St number (from literature or wind tunnel tests)) •  “Empirical” models, i.e. based on static and oscillating experimental data •  Many applications of VIV (in different fluids) à Tons of models (1960’s) •  In this course : 2D models only •  Classification:

43

FFluid = −mA!!y+F

Inviscid added mass Total force – added mass effect

F(t) U∞

WAKE

y

Type A: forced system

F(y(t),t) U∞

WAKE

y

Type B: fluid elastic

F(q)

U∞ WAKE y G(y)

Type C: wake oscillator

mA =ρπD2

4

Page 45: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV Type A : Forced system models From static cylinder : = Classical linear vibration problem

44

F(t) U∞

WAKE

y

Type A

CL (t) = 2CLrms sin St 2πU∞

Dt

"

#$

%

&'

F(t) = L(t) =1/ 2ρU∞2D 2CL

rms sin St 2πU∞

Dt

"

#$

%

&'

FIV2011

à  At resonance (Ur=1/St) : fVS=fS0

•  Amplitude of motion inversely

proportional to damping (ζ ) •  Phase jump from 0 to π •  fVS follows the Strouhal relation

mS +mA( ) !!y+ 2ηS mS +mA( )ωS0 !y+ mS +mA( ) ωS

0( )2y = L(t)

Page 46: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV Type A : Forced system models OK @ large SG numbers KO @ low SG numbers No prediction of Lock-in 45

mS +mA( ) !!y+ 2ηS mS +mA( )ωS0 !y+ mS +mA( ) ωS

0( )2y = L(t) F(t) U∞

WAKE

y

Type A

y(t)D

=12π 3

CLUr2

(1+m*) 1−Ur2St2( )

2+ 4ηS

2Ur2St2( )

1/2 sin 2πStUDt +ϕ

"

#$

%

&'

AD=

CL

4π 3(1+m*)St2ηS2 =

CL

2SG

at resonance with CL=0.35

FIV2011

tanϕ = 2ηSStUr1− St2Ur2

Page 47: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

F(y(t),t) U∞

WAKE

y

Type B

Modelling VIV Type B : Fluid elastic models à  Force dependent of motion (Amplitude, displacement, velocity, acceleration, combination of them …)

Similar to galloping models (Lecture 7) à  Several types exist : 1.  Modified forcing model (Blevins, 1990) :

46

L(t) =1/ 2ρU∞2DCL

AD"

#$

%

&'sin St 2πU∞

Dt

"

#$

%

&'

A/D 0

max CL( )CL (A = 0) for ff /fS0 = 1

1

2

0 .5 1 1.5 2

→CLAD"

#$

%

&'=CL

0 +αAD"

#$

%

&'+β

AD"

#$

%

&'2

From oscillating cylinder (forced motion)

CL0 α and β from experiments

Page 48: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

F(y(t),t) U∞

WAKE

y

Type B

Modelling VIV

47

L(t) =1/ 2ρU∞2DCL

AD"

#$

%

&'sin St 2πU∞

Dt

"

#$

%

&'

mS +mA( ) !!y+ 2ηS mS +mA( )ωS0 !y+ mS +mA( ) ωS

0( )2y = L(t)

CLAD!

"#

$

%&=CL

0 +αAD!

"#

$

%&+β

AD!

"#

$

%&2

AD=CL

AD!

"#

$

%&

2SG

at resonance (same than Type A)

→CL0 = α − 2SG( ) A

D#

$%

&

'(+β

AD#

$%

&

'(2

FIV2011

OK @ large SG numbers Better than Type A @ low SG numbers (underestimate !) Still no prediction of Lock-in

2nd order equation to solve for A/D à

Page 49: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV 2.  Advanced forcing models:

à Amplitude and phase of the force depend on amplitude and reduced frequency of the motion à Concept of phased lift coefficients (oscillating cylinder)

Identified from imposed motion à Ur=U∞/(fD)

is valid outside coincidence

At coincidence :

48

F(y(t),t) U∞

WAKE

y

Type B

L AD,Ur, t

!

"#

$

%&=1/ 2ρU∞

2 CL cosϕAD,Ur

!

"#

$

%&sin ωt( )+CL sinϕ

AD,Ur

!

"#

$

%&cos ωt( )

(

)*

+

,-

mS!!y+ 2ηSmSωS0 !y+mS ωS

0( )2y = L A

D,Ur, t

!

"#

$

%&

AD=−CL sinϕ A /D,Ur =1/ St( )

2SG

Page 50: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

F(y(t),t) U∞

WAKE

y

Type B

Modelling VIV 1.  Modified forcing model (Blevins, 1990) :

2.  Advanced forcing models :

3.  Time domain fluidelastic models:

à Explicit use of the time dependence of time (Chen et al.1995)

49

L(t) =1/ 2ρU∞2DCL

AD"

#$

%

&'sin St 2πU∞

Dt

"

#$

%

&'

L AD,Ur, t

!

"#

$

%&=1/ 2ρU∞

2 CL cosϕAD,Ur

!

"#

$

%&sin ωt( )+CL sinϕ

AD,Ur

!

"#

$

%&cos ωt( )

(

)*

+

,-

L AD,Ur, y, !y, !!y

!

"#

$

%&= −m A

D,Ur

!

"#

$

%&!!y− ρU∞

2c AD,Ur

!

"#

$

%& !y− ρU∞

2k AD,Ur

!

"#

$

%&y

)

*+

,

-.+1/ 2ρU∞

2CL sin ωVSt( )

Classical fluidelastic forces (added mass, damping and stiffness) forcing term, at the frequency of vortex shedding

Page 51: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV

Problem of the Chen’s model : harmonic motion assumed, because of the

dependence of m, c and k on Ur and A/D

(identification based on oscillating cylinder experiments)

Another (much more complex) model, proposed by Simiu & Scanlan (1996)

50

L AD,Ur, y, !y, !!y

!

"#

$

%&= −m A

D,Ur

!

"#

$

%&!!y− ρU∞

2c AD,Ur

!

"#

$

%& !y− ρU∞

2k AD,Ur

!

"#

$

%&y

)

*+

,

-.+1/ 2ρU∞

2CL sin ωVSt( )

L y, !y, t( ) =1/ 2ρU∞2D c(Ur ) 1−ε

y2

D2

#

$%

&

'(!yU∞

+ k(Ur )yU∞

+CL (Ur )sin ωVSt( ))

*+

,

-.

depends on Ur only à not especially harmonic

non linear term to account for amplitude effect

Page 52: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV

51

F(t) =1/ 2ρU∞2D 2CL

rms sin St 2πU∞

Dt

"

#$

%

&'

F(t) =1/ 2ρU∞2DCL

AD"

#$

%

&'sin St 2πU∞

Dt

"

#$

%

&'

F AD,Ur, t

!

"#

$

%&=1/ 2ρU∞

2 CL cosϕAD,Ur

!

"#

$

%&sin ωt( )+CL sinϕ

AD,Ur

!

"#

$

%&cos ωt( )

(

)*

+

,-

F AD,Ur, y, !y, !!y

!

"#

$

%&= −m A

D,Ur

!

"#

$

%&!!y− ρU∞

2c AD,Ur

!

"#

$

%& !y− ρU∞

2k AD,Ur

!

"#

$

%&y

)

*+

,

-.+1/ 2ρU∞

2CL sin ωVSt( )

F y, !y, t( ) =1/ 2ρU∞2D c(Ur ) 1−ε

y2

D2

#

$%

&

'(!yU∞

+ k(Ur )yU∞

+CL (Ur )sin ωVSt( ))

*+

,

-.

F(t) U∞

WAKE

y

Type A : forced system

F(y(t),t) U∞

WAKE

y

Type B : Fluid elastic

F(q)

U∞ WAKE y G(y)

Type C : wake oscillator

Page 53: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV

Limitations of Types A and B :

1.  Limited to harmonic motions (except at the price of cumbersome models (Simiu & Scanlan 1996))

à  Difficult to generalize to more complex motions (multifrequencies …) à  Not a major limitation, because VIV often results in quasi-harmonic

motions

2.  More important: no physical interpretation of wake as a global mode

52

F(t) U∞

WAKE

y

Type A : forced system

F(y(t),t) U∞

WAKE

y

Type B : Fluid elastic

F(q)

U∞ WAKE y G(y)

Type C : wake oscillator

Page 54: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV Type C : Wake oscillator models “Fluid force is the result of the wake dynamics, itself influenced by the cylinder motion” à Coupling of two systems : CYLINDER (y variable) and WAKE (q variable) Several formulations exist for F(q), G(y), W[q(t)] and the choice for q(t) In all cases, the parameters of the models come from experiments on : •  Static cylinder à Lift force à F(q)

Wake dynamics à W[q(t)] •  Oscillating cylinder à Wake dynamics à G(y)

53

F(q)

U∞ WAKE y G(y)

Type C

m!!y+... = F(q)W q(t)[ ] =G(y,...)

!"#

$#

F(q) = effect of the wake on the cylinder G(y) = effect of the cylinder on the wake W[q(t)] = dynamics of the free wake

Page 55: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV Type C : Wake oscillator models Most natural choice of q(t) by Hartlen and Currie (pioneers) : à  Directly :

W[q(t)] must respect two essential features of the wake as a global mode :

1.  The oscillating wake results from a self-sustained flow instability, as linear unstable mode

2.  This instability is self-limited, as a nonlinear global mode A Rayleigh equation capture these features : (a van der Pol oscillator does it too) Finally, (rather arbitrary choice by H&C) 54

m!!y+... = F(q)W q(t)[ ] =G(y,...)

!"#

$#

q(t) =CL (t)

F q(t)( ) = F CL (t)( ) = 12ρU∞

2DCL (t)

W q(t)[ ] = !!q− a !q+ b !q3 +ω 2q = 0with a,b > 0

G(y) = c!y

Page 56: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV Type C : Wake oscillator model by Facchinetti, de Langre & Biolley •  Using the wake dof :

•  Based on a van der Pol oscillator for W[q(t)]

•  Using acceleration for coupling the wake to the structure

55

mS + ρD2 π

4!

"#

$

%&!!y+ cS +

12ρU∞D St CD

!

"#

$

%& !y+ kSy =

14ρU 2

∞DCL0q

!!q+ 2πStU∞

Dε q2 −1( ) !q+ 2πStU∞

D!

"#

$

%&

2

=AD!!y

)

*

++

,

++

q(t) = 2CL (t) /CL0

from force measurement in static cylinder experiments (typical values: CL0=0.3 and CD=1.2)

from wake analysis (hotwire) in static cylinder exp. (typical values : St=0.2 and ε = 0.3) from wake analysis in oscillating cylinder exp. (typical value : A = 12)

Page 57: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV Type C : Wake oscillator model by Facchinetti, de Langre & Biolley Using typical values (+CD=1) à  Strong underestimation of the amplitude à  But good qualitative influence of the SG parameter on the lock-in

range

56

modified forcing model

wake oscillator

forcing model

FIV2011 FIV2011

Page 58: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Modelling VIV Type C : Wake oscillator model by Y. Tamura and G. Matsui (1979)

57

!!Y + 2ηS +mr f +CD( ) ν2πSt

!

"#$

%&!Y +Y = − f mrν

2 α(2πSt)2

!!α − 2ξν 1− 4 f 2

C2L0

α 2!

"#

$

%& !α +ν 2α = −mr

!!Y − 2πSt ν !Y

(

)

**

+

**

m!!y+... = F(q)W q(t)[ ] =G(y,...)

!"#

$#

CL = − f α + 2πSt!Yν

"

#$

%

&'

Y = non-dim vertical displacement α = wake position

from force measurement in static cylinder experiments (typical values: CL0=0.3 and CD=1.2)

from wake analysis (hotwire) in static cylinder exp. (typical values : St=0.2 and f = 1.16) from wake analysis in oscillating cylinder exp.

Page 59: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Today’s lecture

Dimensional analysis Examples of VIV Flow around static cylinders Effect of a prescribed motion of the cylinder Free vibration: VIV Modelling VIV Lock-in mechanism

58

Page 60: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Lock-in mechanism à  Link between Lock-in and linear coupled-mode flutter (> L3) (proposed by de Langre 2006) Wake oscillator model by Facchinetti, de Langre & Biolley (FLB) Non-dimensionalized : Neglecting damping and NL terms : (i.e. not responsible for lock-in)

à Ω is the only driving parameter

59

mS + ρD2 π

4!

"#

$

%&!!y+ cS +

12ρU∞D St CD

!

"#

$

%& !y+ kSy =

14ρU 2

∞DCL0q

!!q+ 2πStU∞

Dε q2 −1( ) !q+ 2πStU∞

D!

"#

$

%&

2

=AD!!y

)

*

++

,

++

!!Y +λ !Y +Y =MΩ2q

!!q+εΩ q2 −1( ) !q+Ω2q = A !!Y

#

$%

&%

t = kSmS +mF

T

Y = y /Dγ =CD / 4πSt( )Ω = St Ur

µ =mS +mF

ρD2

λ = 2ζ +γ /µ

M =CL

0

16π 2St2µ

!!Y +Y =MΩ2q!!q+Ω2q = A !!Y

"#$

%$

Ω = St Ur =fVSf

Page 61: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Lock-in mechanism Solution of this system is straightforward : Feeding the solution into the system equations à  frequency equation :

if AM < 1 (verified in practice) à Two modal frequencies ω1 and ω2 Variation of ω1 and ω2 with Ω (= driving parameter) ?

60

!!Y +Y =MΩ2q!!q+Ω2q = A !!Y

"#$

%$

Y,q( ) = Y0,q0( )eiωt

D(ω) =ω 4 + AM −1( )Ω2 −1#$ %&ω2 +Ω2 = 0

ω12 =121+ 1− AM( )Ω2 + 1+ 1− AM( )Ω2( )

2− 4Ω2#

$%&

'(

ω22 =121+ 1− AM( )Ω2 − 1+ 1− AM( )Ω2( )

2− 4Ω2#

$%&

'(

Page 62: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Lock-in mechanism Depending on the sign of the radicand :

or à ω1 and ω2 are real modal frequencies à  two neutrally stable modes co-exist

(neutrally because damping is neglected here)

The corresponding mode shapes :

61

ω1,22 =

121+ 1− AM( )Ω2 ± 1+ 1− AM( )Ω2( )

2− 4Ω2#

$%&

'(

1+ 1− AM( )Ω2( )2− 4Ω2 ≥ 0 Ω <

11+ AM

Y0q0=MΩ2

1−ω 2 =Ω2 −ω 2

Aω 2

Ω

de Langre 2006

11+ AM

11− AM

à  close to ωR = Ω = Wake mode à  close to ωR = 1 = Structural mode

Ω >1

1− AM

Page 63: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Lock-in mechanism

62

11+ AM

<Ω <1

1− AM

Ω

de  Langre  2006  

11+ AM

11− AM

ω1,2 =Ω

1+ tan2θ1± i tanθ( )

θ =12tan−1

4Ω2 − 1+ (1− AM )Ω2( )2

1+ (1− AM )Ω2

In the range Two modes exist, but with complex conjugate frequencies

à  Coupled-Mode Flutter solution (CMF) = merging of two frequencies

of the neutral modes

à Range of instability one stable mode and one unstable mode

Page 64: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Lock-in mechanism Coupled-Mode Flutter solution (CMF) one stable mode and one unstable mode In the CMF range : -  No distinction between modes -  Strong deviation of the frequency of the

wake mode from ω = Ω (Strouhal relation), instead ω ~ 1

-  One unstable mode instead of two well separated stable (pure wake and pure structural) modes

à CMF range ~ Lock-in range

63

11+ AM

11− AM

Ω

de Langre 2006

ωi < 0 ωi > 0

unstable

stable

Page 65: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Lock-in mechanism Most unstable mode ? Remember we assumed no damping : ε = λ = 0 Out of the Lock-in range, it is interesting to know which mode is dominant Considering non-zero damping : ε and λ > 0 A first order expansion of the frequency equation yields : if ω0 stands for ωW à ε and λ have a destabilization effect on the wake mode if ω0 stands for ωS à ε and λ have a damping effect on the structural mode

à in both cases the most unstable mode has the frequency of the wake mode 64

ω =ω0 + iε Ωω0

2 1−ω0

2

2(ω0

4 −Ω2 )

#

$%%

&

'((− iλ ω

0

2 Ω2 −ω0

2

2(ω0

4 −Ω2 )

#

$%%

&

'((

Page 66: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Lock-in mechanism à Resulting frequency of oscillation = the one of the dominant mode

i.e. the wake mode

65

AM = 0.05 AM = 0.75

Small Lock-in range Small deviation from Strouhal

Large Lock-in range Large deviation from Strouhal outside CMF

de Langre 2006

Page 67: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Lock-in mechanism Critical mass ratio Lock-in range = limit of CMF range : The extend of Lock-in is significantly affected by the ratio of the cylinder mass to the fluid mass : ≠ The lower Lock-in limit : The upper Lock-in limit :

66

µ =mS +mF

ρD2

11+ AM

<Ω <1

1− AM

m* =mS

ρπD2 / 4m* =

4πµ −1

ΩMIN =1

1+ AM→ St Ur

MIN = 1+ ACL0

4π 3St2 (m* +1)

#

$%%

&

'((

−1

ΩMAX =1

1− AM→ St Ur

MAX = 1− ACL0

4π 3St2 (m* +1)

$

%&&

'

())

−1

Ω

de Langre 2006

Page 68: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Lock-in mechanism Critical mass ratio The lower Lock-in limit : The upper Lock-in limit :

67

UrMIN =

1St

1+ ACL0

4π 3St2 (m* +1)

!

"##

$

%&&

−1

UrMAX =

1St1− ACL

0

4π 3St2 (m* +1)

"

#$$

%

&''

−1

de Langre 2006 Fixed St = 0.2 2 values for CL

0

CL0 = 0.6

CL0 = 0.3

Depend on St, m* and CL0 only

à Depending on the value of CL0, a critical value of m* exists

for which lock-in persists forever

mCRIT* =

ACL0

4π 3St2−1

Page 69: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Today’s lecture

Dimensional analysis Examples of VIV Flow around static cylinders Effect of a prescribed motion of the cylinder Free vibration : VIV Modelling VIV Lock-in mechanism

68

Page 70: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Summary •  Static cylinder à strong dependence on Re •  Oscillating cylinder

Strong dependence on ff/fVS0 forcing frequency

A/D forcing amplitude à Effects on the flow pattern (2S, 2P S+P modes) & vortex shedding frequency

Three different representations of the lift force : Modulus and phase Phased lift coefficients Inertia and drag coefficients

69

à lock-in

à function of A/D and ff /fVS0

Page 71: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Summary •  Free cylinder à VIV

70

AD, fSfS0 ,fVSfS0

!

"#

$

%&= F Ur, Re,mr,ηS( )

Amax = Function(SG) Lock-in range = Function(SG) à  VIV = Self-limited phenomenon

à  3 types of models: - forced system models - fluid elastic models - wake oscillator models

SG4πSt2

SG

Page 72: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Summary

71

F(t) U∞

WAKE

y

Type A : forced system

F(y(t),t) U∞

WAKE

y

Type B : Fluid elastic

F(q)

U∞ WAKE y G(y)

Type C : wake oscillator

F(t) =1/ 2ρU∞2D 2CL

rms sin St 2πU∞

Dt

"

#$

%

&' F A

D,Ur, y, !y, !!y

!

"#

$

%& m!!y+... = F(q)

W q(t)[ ] =G(y,...)

!"#

$#

modified forcing model

wake oscillator

forcing model

Type A B and C are empirical models Type C models the cause of the fluid forces (that types A & B take for granted)

Page 73: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

Summary •  Lock-in mechanism through linear analysis

à Coupled-Mode Flutter (CMF) •  Critical mass ratio à infinite lock-in range

•  Link between Airfoil flutter and Lock-in

pitch (α) and plunge (h) transverse displacement (y) and wake variable (q)

72

CL(t)

related to position of the separation point

mS + ρD2 π

4!

"#

$

%&!!y+ cS +

12ρU∞D St CD

!

"#

$

%& !y+ kSy =

14ρU 2

∞DCL0q

!!q+ 2πStU∞

Dε q2 −1( ) !q+ 2πStU∞

D!

"#

$

%&

2

=AD!!y

)

*

++

,

++

!!Y +Y =MΩ2q!!q+Ω2q = A !!Y

"#$

%$

Page 74: Aeroelasticity & Experimental · PDF fileAeroelasticity & Experimental Aerodynamics ... Phased lift coefficients 3. Inertia and drag coefficients 32 y(t) ... Oscillating cylinder :

References

•  FIV1977 ‘Flow-induced vibration’, R.D. Blevins •  FSI2011 ‘Fluid-structure Interactions : cross-flow induced instabilities’, M.P. Paidoussis,

S. J. Price, E. de Langre. Cambridge University Press •  Williamson 2004 : C.H.K. Williamson and R. Govardhan, ‘Vortex-Induced Vibrations’,

ann. rev. Fluid Mech 2004, 36:413-55 •  Larsen 2000 : A. Larsen et al. ‘Storebelt suspension bridge - vortex shedding excitation

and mitigation by guide vanes’, J. Wind Engineering and Industrial Aerodynamics 2000, 283-296

•  Frandsen 2001 J.B. Frandsen, ‘Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge’, , J. Wind Engineering and Industrial Aerodynamics 2001, 95-129

•  Carberry et al. 2005 Carberry, J., Sheridan, J. & Rockwell, D. ‘Controlled oscillations of a cylinder: Forces and wake modes’, J.l of Fluid Mechanics 2005 538, 31–69.

•  Sarpkaya 1979 Sarpkaya, T. ‘ Vortex-induced oscillations – a selective review’ J. of Applied Mechanics 1979, 46, 241–258.

•  Sumer 2006 B.M. Sumer J. Fredsoe ‘Hydrodynamics around cylindrical structures’, Advanced series on ocean engineering, Vol 26, World Scientific

•  de Langre 2006 E. de Langre ‘Frequency lock-in is caused by coupled-mode flutter’, J. of Fluids and structures 2006, 22, 783-791

•  Y. Tamura and G. Matsui ‘Wake oscillator model of vortex induced oscillation of circular cylinder’ Proceedings of the 5th International Conference on Wind Engineering, Vol.2, Fort Collins, Colorado, USA, July 1979, pp. 1085-1092

73