aerodynamic performance of a compact, high work-factor ... · • aerodynamic performance of an...

25
National Aeronautics and Space Administration www.nasa.gov Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level Edward P. Braunscheidel & Gerard E. Welch - NASA Glenn Research Center Gary J. Skoch – Army Research Laboratory Gorazd Medic and Om P. Sharma – United Technologies Research Center 1 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference July 28-30, 2014, Cleveland, OH https://ntrs.nasa.gov/search.jsp?R=20140017398 2020-04-04T01:15:51+00:00Z

Upload: others

Post on 26-Mar-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

National Aeronautics and Space Administration

www.nasa.gov

Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor

at the Stage and Subcomponent LevelEdward P. Braunscheidel & Gerard E. Welch - NASA Glenn Research Center

Gary J. Skoch – Army Research LaboratoryGorazd Medic and Om P. Sharma – United Technologies Research Center

1

50th AIAA/ASME/SAE/ASEE Joint Propulsion ConferenceJuly 28-30, 2014, Cleveland, OH

https://ntrs.nasa.gov/search.jsp?R=20140017398 2020-04-04T01:15:51+00:00Z

National Aeronautics and Space Administration

www.nasa.gov

Aerodynamic Performance of a Compact, High Work-FactorCentrifugal Compressor at the Stage and Subcomponent Level

• Background and Scope• Test Article and Facility Description• Key Instrumentation• Stage and Subcomponent Results• Performance Assessment vs. Pre-test CFD• Summary

2

National Aeronautics and Space Administration

www.nasa.gov

Background and Scope

3

• NASA/UTRC High Efficiency Centrifugal Compressor (HECC) NRA cost-share contract– Develop HPC technologies for

advanced turboshaft engines for rotorcraft

– Challenging goal set for centrifugal compressors

– Maintain similitude between engine scale and rig scale hardware

– Design/Analysis, fab, assembly, test

Metric Intent (rig scale,2x engine scale) CFD*

Exit-corr. flow 2.1 < �c,ex < 3.1 lbm/s 2.98

Work factor 0.60 < �H0/U22 < 0.75 0.7905

�p,tt (poly) � 0.88 0.888

Diam. ratio Dmax / D2 � 1.45 1.45

Design SM 13% 12%

Mex 0.15 0.15

�ex 15� 14�

*Medic, G., et al., “High Efficiency Centrifugal Compressor for Rotorcraft Applications,” NASA/CR—2014-218114, Sept., 2014.

National Aeronautics and Space Administration

www.nasa.gov

HECC Stage OverviewDesign speed = 21,789 ft/s (Exit tip speed = 1615 ft/s)

4

– Impeller: 15 blade/splitter pairs, spanwise varying backsweep, lean, elliptical leading and trailing edges

– Diffuser: 20 vane/splitter pairs, with splitters offset to maximize pressure recovery– EGVs: 60 cascade-style airfoils

National Aeronautics and Space Administration

www.nasa.gov

Small Engine Component Test Facility (CE-18)

5

• 6000 hp / 60,000 rpm / 30:1 PR / Max 20� diameter • Inlet pressures 2-45 psia / Inlet air -20 ºF to ambient• Inlet flow 60 lbm/s / Exhaust to ambient or 26 in-hg

Air supply

Air Exhaust

Inlet Fine Control Valve

Plenum (Station 0, Inlet Reference)

Mass Flow Orifice

Test articleInlet Coarse Control Valve

Gearbox

National Aeronautics and Space Administration

www.nasa.gov

Tip Clearance System

6

��/b of 0.5%, � 0.12 pt. impact on �tt

Impeller Translates Axially

Tip Clearance Variations @ Nc = 100%

• 4 rub probes at each station used for tip clearance calibration/alignment

• �/b = 2% (0.012�) design tip clearance, no step in flowpath at impeller/diffuser interface

0.0094

0.0111

0.0095

0.0118

0.00900.00960.0127

0.0092

Impeller�TEImpeller�LE

National Aeronautics and Space Administration

www.nasa.gov

Diffuser LE and “Rake” Instrumentation

• Vane Leading Edge (2.4)– Two vanes with 7 Kiel head p0 ports – Key measurements for impeller and

diffuser performance

7

• Vane Trailing Edge (2.7)– 6 locations resolve one main-to-

main diffuser passage– Miniature Cobras at immersions

of 15-85%, calibrated for � and p0

Passage�APassage�B

National Aeronautics and Space Administration

www.nasa.gov

Surveys3-Port Cobra Probe

8

• Vaneless Space (2.2) & Diffuser Exit (2.7)– Traversable spanwise, manually aligned to

flow– Calibrated to M=0.84 (Cal. Facility limit)

Station 2.2

Station 2.7

National Aeronautics and Space Administration

www.nasa.gov

EGV Exit/Stage Rating (Station 3)• 12 Rakes indexed to resolve one main-to-main diffuser pitch• Kiel head p0 and T0 ports on area centroids

• 3 adjacent EGVs have LE Kiel head p0 (25-75% span)

9

po x3

To�x2

National Aeronautics and Space Administration

www.nasa.gov

Stage and Subcomponent Results

• Compressor Maps• Design point performance - comparison of measured vs. predicted• Representative subcomponent measurements at Nc = 100%

10

National Aeronautics and Space Administration

www.nasa.gov

Stage Pressure Ratio vs. Inlet Corrected Mass Flow Rate

11

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

4 5 6 7 8 9 10 11 12 13

Total�Pressure�Ra

tio,�p

0,3.0/p 0

,0

Inlet�Corrected�Mass�Flow�Rate,�lbm/s

Stall�Boundary

3.0�lbm/s�op�line

Design Point

105%

100%

95%

90%85%

75%70%

National Aeronautics and Space Administration

www.nasa.gov

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

Efficiency,�%�

Inlet�Corrected�Mass�Flow�Rate,��lbm/s

Design Intent

Adiabatic

Polytropic

105%100%95%90%85%75%70%

Efficiency vs. Inlet Corrected Mass Flow Rate

12

National Aeronautics and Space Administration

www.nasa.gov

Metric Design�GoalRig�Scale�

Design�Intent�p0,0=14.7�psia

Rig�Scale��Design�Intent�

p0,0=11�psia

Measuredp0,0=11�psia

Uncertainty�(95%�Confidence)

Pressure�ratio,�������������������p0,3/p0,0 4.85 4.80 4.68�± 0.0074

Inlet�flow�rate,��������������c,in ,�lbm/s 11.2 11.1 10.85�± 0.1

Exit flow�rate,���������������c,ex ,�lbm/s 2.1�<��c,ex <�3.1 2.98 2.98 2.98

Adiabatic�efficiency�, �tt ,���% 0.862 0.8495 0.822�± 0.011

Polytropic efficiency, �p,tt ,�% > 0.88 0.888 0.879 0.855

Adiabatic,�total�pressure�to�static�pressure,�������������������������������ts , %

0.852 0.8396 0.805

Exit�Mach�number,������������Mex 0.15 0.15 0.15 0.18

Exit�flow�angle,������������������ex ,�deg 15o 14o 14o 34.3o

Stability�Margin,����������������SM,���% 13 12 12 7.5

Work factor 0.60�<��H0/U22 <�0.75 0.7905 0.793 0.81

Diameter�ratio Dmax/D2 < 1.45 1.45 1.45 1.45

Measured vs. Predicted Performance(Nc = 100%, �c,ex = 3.0 lbm/s, design tip clearance)

13

National Aeronautics and Space Administration

www.nasa.gov

Impeller Exit (2.2) and Diffuser Vane LE (2.4)(Nc = 100%, �c,ex = 3.0 lbm/s)

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 60 70 80 90 100

Fractio

n�of�sp

an�from

�hub

Swirl�angle��2.2,�deg.

100% Nc

Probe�at�2.2

Pre�test�CFD

• Measured swirl angle in relatively good agreement

• Vane to vane agreement very good• Vane LE and CFD in good agreement• Probe p0 (at 2.2) lower than vane LE, probe does not

adequately resolve the pressure flow field • Probe (2.2 vaneless space) data only used qualitatively

ur

u�

�u

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 3.5 4 4.5 5 5.5 6

Fractio

n�of�sp

an�from

�hub

Local�p0,2.2(z)/p0,0

100% Nc

Probe�at�2.2

Vane�LE�

Pre�test�CFD

National Aeronautics and Space Administration

www.nasa.gov

Diffuser Exit Probe Survey Data (2.7)(Nc = 100%, �c,ex = 3.0 lbm/s)

15

B

p0,2.7/p0,0

Flow�Angle,�Deg.

SS���PSsplitter

SS��PSmain

PSmain

SS���PSsplitter

SS���PSmain

%�Span�Hub�to�Tip

%�Pitch,�Main�to�Main

%�Span�Hub�to�Tip

A

TE�Mean�Camber�AngleMain�=�51�degSplitter�=�52�deg

0%

100% 200%

100%

0%

ur

u�

�u

AB

National Aeronautics and Space Administration

www.nasa.gov

Diffuser Exit Survey Results vs. Operating Condition (Nc = 100%, Choke, Design, Near-Stall)

16

• Flow redistributes as stage is throttled• High swirl angles at SS main vane could indicate

separated flow

National Aeronautics and Space Administration

www.nasa.gov

Pressure Contours at Stations 2.7, 2.8, 3.0(Nc = 100%, �c,ex = 3.0 lbm/s)

17

po,x/po,0

National Aeronautics and Space Administration

www.nasa.gov

Diffuser Vanes Loading Diagrams-Shroud Static Pressures (Nc=100, near design point CFD)

18

2.5

3

3.5

4

4.5

5

Normalize

d�static�pressure,�p/p

0,0

1.5

2

2.5

3

3.5

4

4.5

5

8.5 9 9.5 10 10.5 11 11.5

Normalize

d�static�pressure,�p/p

0,0

Radius,�in.

Pressure�side���pre�test�CFDSuction�side���pre�test�CFDPressure�side���dataSuction�side���data

AB

SS Main

PS Main

PS Splitter

SS Splitter

• Overall pressure rise lower than predicted• Negative loading on splitter indicates

operating at large negative incidence vs. lightly loaded design intent

National Aeronautics and Space Administration

www.nasa.gov

60

65

70

75

80

85

90

95

10 10.5 11 11.5 12 12.5

Impe

ller�a

nd�stage�efficiency,�%

Inlet�corrected�flow,�lbm/s

Impeller�(Sta.�0�to�2.4)Stage�(Sta.�0�to�3)Impeller���pre�test�CFDStage���pre�test�CFD

Stage and Impeller Adiabatic Efficiency

19

100% Nc

Impeller CFD

Stage CFD

National Aeronautics and Space Administration

www.nasa.gov

Diffusion System Static Pressure Rise

20

�0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 10.5 11 11.5 12

Static�pressure�rise�coefficient

Inlet�corrected�flow,�lbm/s

Diffuser90�deg.�bend�+�EGVDiffuser�+�90�deg.�bend�+�EGV

100% Nc

Design�intent�(�c,ex =�3�lbm/s)

Stall

Choke

• Static pressure rise increases from choke to stall (Diffuser and Diffuser+Bend+EGV)

• Static pressure rise across 90� bend and EGV is relatively constant

� � inininexp ppppc � ,0/

National Aeronautics and Space Administration

www.nasa.gov

Diffuser Loss Bucket

21

0

5

10

15

20

25

30

35

10 10.5 11 11.5 12 12.5

�p 0/p

0of�diffuser,�%

Inlet�corrected�flow,�lbm/s

Design�intent�(�c,ex =�3�lbm/s)

100% Nc

Expt.stall�boundary

Data

CFD

Test results show a minimum loss at a lower flow rate than design intent

National Aeronautics and Space Administration

www.nasa.gov

Diffuser Corrected Flow Characteristic

22

2

2.2

2.4

2.6

2.8

3

3.2

2 2.5 3 3.5 4

Impe

ller�e

xit�corrected

�flow

,�lb m

/s

Stage�exit�corrected,�lbm/s

NASA�HECC�12�mil���coarse�grid���mixing�planeNASA�HECC�12�mil���fine�grid���mixing�planeHECC�test�data

Design�intent�100% Nc

Diffuser processes flow as per design intent @ �c,ex=3.0 lbm/s

National Aeronautics and Space Administration

www.nasa.gov

Impeller Corrected Flow Characteristic

23

2

2.2

2.4

2.6

2.8

3

3.2

10 10.5 11 11.5 12 12.5

Impe

ller�e

xit�corrected

�flow

,�lb m

/s

Stage�(impeller)�inlet�corrected�flow,�lbm/s

Data CFD

Design�intent�(�c,ex =�3�lbm/s)

100% Nc

• Impeller is operating at a lower �c,in at the design intent impeller exit correct flow rate

National Aeronautics and Space Administration

www.nasa.gov

Summary

• Aerodynamic performance of an advanced, compact, high work-factor centrifugal compressor stage was presented

• Stage performance and stability were lower than design intent– Adiabatic Efficiency by 2.75 pts., mass flow by 2.25%, and

Stability Margin by 4.5 pts. • Differences in predicted and measured impeller efficiency,

impeller flow characteristics, and diffuser loss buckets were observed.

• Root-cause-analysis of the performance shortfall was initiated within the NRA contract. Analyses continue with intent to guide future design efforts.

24

Comprehensive data sets and geometry to be made publically available

National Aeronautics and Space Administration

www.nasa.gov

Acknowledgements

Drs. Joo JongwookLarry HardinDuane McCormickWilliam CousinsBrian HolleyPaul Van SlootenElizabeth LurieAamir Shabbir

25

Dr. Michael HathawayMark StevensJonathon MitchelJozsef PuskasAdam ReddingDavid HayduRichard Senyitko

Design Review Team