advanced(laboratory(tes1ng(methods( · pdf fileadvanced(laboratory(tes1ng(methods ... outside...

48
NREL is a na*onal laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Advanced Laboratory Tes1ng Methods Use Case: PHIL An*islanding Tes*ng DERlab/SIRFN Workshop 19 March 2015 Blake Lundstrom, P.E. Research Electrical Engineer Power Systems Engineering Center Na*onal Renewable Energy Laboratory (NREL) Golden, CO, USA

Upload: vuongnhan

Post on 11-Mar-2018

236 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

NREL  is  a  na*onal  laboratory  of  the  U.S.  Department  of  Energy,  Office  of  Energy  Efficiency  and  Renewable  Energy,  operated  by  the  Alliance  for  Sustainable  Energy,  LLC.  

Advanced  Laboratory  Tes1ng  Methods  Use  Case:  PHIL  An*-­‐islanding  Tes*ng  

DERlab/SIRFN  Workshop    

19  March  2015  

Blake  Lundstrom,  P.E.  Research  Electrical  Engineer  Power  Systems  Engineering  Center  Na*onal  Renewable  Energy  Laboratory  (NREL)  Golden,  CO,  USA  

Page 2: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

2  

Outline  

•  Introduc1on  to  PHIL-­‐based  Uninten1onal  Islanding  Tes1ng    

•  NREL  Experimental  Implementa1on  and  Capabili1es  o  AC/DC  amplifiers  (NREL  and  U.S.)  o  Lab  power  ra*ng  /  grid  level  o  Real-­‐*me  systems  available  o  Interoperability  (technical/communica*on/interface)  

•  PHIL  UI  Test  Results  •  PHIL  co-­‐simula1on  

Page 3: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

3  

Introduc1on  –  IEEE  1547  and  UI  

��������������

� ��������������

Figure 2.4: Unintentional islanding test circuit (Simplified version of Figure 2 of IEEE Std1547.1 [39])

IEEE Std 1547.2-2008 [30] fills that gap by providing very detailed information as to the

interpretation, background, and impact of each requirement in IEEE Std 1547-2003 as well

as application guidance, tips, techniques, and rules of thumb to aide implementation of each

requirement. For example, IEEE Std 1547-2003 provides only a simple statement regarding

the requirement regarding voltage regulation: “The DR shall not actively regulate the voltage

at the PCC. The DR shall not cause the Area EPS service voltage at other Local EPSs to go

outside the requirements of ANSI C84.1-1995, Range A” [18]. However, IEEE Std 1547.2-

2008 provides much greater detail, such as that regarding interpretation: “there is a subtle

di↵erence between actively regulating and fulfilling an area EPS request to supply or absorb

reactive power” [30]; background on voltage regulation, typical utilization equipment, voltage

limits from ANSI C84.1 Range A [40], etc.; the potential impacts of DR on utility voltage

regulation schemes; and rules of thumb as to when to expect voltage regulation issues due

to DRs. Overall, IEEE Std 1547.2-2008 is an extremely valuable resource for understanding

IEEE Std 1547 and interconnection issues in general.

2.5 IEEE Std 1547.3

IEEE Std 1547 provides specific interconnection requirements that describe how a specific

DR or group of DRs must interact with the area EPS at a single PCC. However, the success-

24

Uninten1onal  Islanding  Requirement  •  For  an  uninten*onal  island  in  which  the  DR  energizes  a  

por*on  of  the  Area  EPS  through  the  PCC,  the  DR  interconnec*on  system  shall  detect  the  island  and  cease  to  energize  the  Area  EPS  within  two  seconds  of  the  forma*on  of  an  island.    

Page 4: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

4  

    B usCirc uits

B us

Substat ion Feeds

Step-Dn Transfe rs

L

C irc uit Isla nd

N. C.

N.C.

N.C .

L L

Adja cent C ircuit

N .O. (c losed for adjacent

circuit island)

(open for circuit island)

Open for lateral island

CB2

©  IEEE  1547.4-­‐2011  

Circuit  Island  

Page 5: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

5  

Introduc1on  –  Tradi1onal  UI  Test  

5

Prac1cal  Limita1ons:  •  RLC  load  bank  overall  (and  step  size)  power  level  •  Discrete  elements  in  RLC  load  bank  •  Execu*on  *me  for  large  number  of  cases  

Page 6: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

6  

Introduc1on  –  PHIL-­‐based  UI  Test  

6

Advantages:  •  Specialized  RLC  load  bank  no  

longer  needed  (though  power  amplifier  and  RTS  required)  

•  Tuning  of  RLC  load  bank  much  more  precise  with  modeled  elements  instead  of  discrete  elements  

•  Execu*on  *me  for  a  single  test  is  much  faster  and  tests  can  be  automated  

Page 7: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

7  

Introduc1on  –  Components  Required  for  PHIL  

•  AC  Power  Amplifier  (and  possibly  a  dump  load)  of  appropriate  specifica1ons  

•  Real-­‐1me  Simulator  (RTS)  and  RT  model  •  AC  Current  Sensors  •  Stabiliza1on  network  (if  applicable)  

7  

Page 8: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

8  

Outline  

•  Introduc1on  to  PHIL-­‐based  Uninten1onal  Islanding  Tes1ng    

•  NREL  Experimental  Implementa1on  and  Capabili1es  o  AC/DC  amplifiers  (NREL  and  U.S.)  o  Lab  power  ra*ng  /  grid  level  o  Real-­‐*me  systems  available  o  Interoperability  (technical/communica*on/interface)  

•  PHIL  UI  Test  Results  •  PHIL  co-­‐simula1on  

Page 9: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

9  

PV

Energy Storage

Diesel / NG Generators

AC Loads

Aux / DC Loads

GS

Local Controller

Power Conditioningand Conversion

DC REDB AC REDB

Grid ModelDC Device Models

Bi-directionalProgrammable DC Supply

Bi-directionalGrid Simulator

M M

Local Hardwareat ESIF

ESIFEquipment

Distribution PMUWeather

Real-Time Data User Interface and Visualization

Real-TimeSimulator

LocalUser Interface

Ipv Id Rp

Rs

V

I

Market Pricing

Local UtilityConnection

GSAC Device Models

System Controller PCC

27  

Page 10: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

10  

PV

Energy Storage

Diesel / NG Generators

AC Loads

Aux / DC Loads

GS

Local Controller

Power Conditioningand Conversion

DC REDB AC REDB

Grid ModelDC Device Models

Bi-directionalProgrammable DC Supply

Bi-directionalGrid Simulator

M M

Local Hardwareat ESIF

ESIFEquipment

Distribution PMUWeather

Real-Time Data User Interface and Visualization

Real-TimeSimulator

LocalUser Interface

Ipv Id Rp

Rs

V

I

Market Pricing

Local UtilityConnection

GSAC Device Models

System Controller PCC

Real-­‐*me  PMU  Measurements  

27  

Page 11: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

11  

PV

Energy Storage

Diesel / NG Generators

AC Loads

Aux / DC Loads

GS

Local Controller

Power Conditioningand Conversion

DC REDB AC REDB

Grid ModelDC Device Models

Bi-directionalProgrammable DC Supply

Bi-directionalGrid Simulator

M M

Local Hardwareat ESIF

ESIFEquipment

Distribution PMUWeather

Real-Time Data User Interface and Visualization

Real-TimeSimulator

LocalUser Interface

Ipv Id Rp

Rs

V

I

Market Pricing

Local UtilityConnection

GSAC Device Models

System Controller PCC

Real-­‐*me    Solar  Irradiance  Measurements  

27  

Page 12: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

12  

PV

Energy Storage

Diesel / NG Generators

AC Loads

Aux / DC Loads

GS

Local Controller

Power Conditioningand Conversion

DC REDB AC REDB

Grid ModelDC Device Models

Bi-directionalProgrammable DC Supply

Bi-directionalGrid Simulator

M M

Local Hardwareat ESIF

ESIFEquipment

Distribution PMUWeather

Real-Time Data User Interface and Visualization

Real-TimeSimulator

LocalUser Interface

Ipv Id Rp

Rs

V

I

Market Pricing

Local UtilityConnection

GSAC Device Models

System Controller PCC

1.08  MVA  Grid  Simulator  

27  

Page 13: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

13  

1.08  MVA  Grid  Simulator  Basic  Specifica+ons  (RS270)  •  Voltage:  0  –  400  Vl-­‐n  or  400  Vdc  •  Frequency:      

o  DC  or  16  –  819  Hz  (Sourcing)    o  DC  or  16  –  500  Hz  (Sinking)  

•  Current:    375  A  (1500  A  total)  •  Power  Flow:    Bi-­‐direc*onal  •  Phase  Control:    Independent  

phase  control  •  PHIL  Interface:    Analog  input  

corresponding  to  instantaneous  voltage  waveform  command  

•  Input  Current  THD:      o  Source  Mode:    ~  3%  o  Sink  Mode:    ~  5%  

•  Sobware  Interface:  o  Transient  List  Editor  o  Arbitrary  Waveform  

Genera*on  •  Cooling:    Air-­‐cooled  

Manufacturer  and  Base  Model  Ametek  RS90  (90  kVA)  

Modularity  Four  RS270  “Quads”  capable  of  independent  or  parallel  opera*on      

Page 14: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

14  

1.0  MVA  Grid  Simulator  –  Addtl.  Specs  

Architecture  •  Topology:    Three  Single-­‐Phase  H-­‐Bridges  •  Device  Type:    PFC  =  IGBT,  Inverter  =  MOSFET  •  Inverter  Switching  Frequency:    60  kHz,  interleaved  to  240  kHz  effec*ve  Output  Specifica+ons  •  Voltage  Accuracy:    ±0.3  V  AC,  ±1  V  DC  •  Frequency  Accuracy:  ±0.01%  •  Phase  Angle  Accuracy:    <  1.5°  @  16  –  100  Hz;  <  2°  @100  –  500  Hz  •  THD  at  full  load      

o  Sourcing:    <  0.5%  @  16  –  66  Hz;  <  1%  @  66  –  500  Hz;  <  1.25%  up  to  819  Hz  o  Sinking:    <  1%  @45  –  66  Hz;  <  2%  @  66  –  500  Hz  

•  Load  Regula1on:    0.25%  FS  @  DC  –  100  Hz;  0.5%  FS  @  >  100  Hz  •  DC  Offset  Voltage:    <  20  mV  •  Slew  Rate:  200  µs  for  20%  -­‐  90%  output  change  into  resis*ve  load,  >  0.5  V/µs  •  Sedling  Time:    <  0.5  µs  •  -­‐3dB  Bandwidth:    4  kHz  (but  fundamental  component  limited  to  1  kHz  due  to  

output  snubber  power  limita*ons)  

Page 15: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

15  

Summary  of  MW-­‐scale  Power  Amplifiers  (U.S.  Facili1es)  

1.08  MVA  (+1.08  MVA  future)  480  V  

6

� Installed at NWTC test site—November 2012 � Commissioning and characterization testing—end of 2013 � Row 4/turbine bus connection—FY14 � Energy storage site connection—end of 2014

NWTC’s 7-MVA CGI

Photo from Mark McDade, NREL

7  MVA  (39  MVA  short-­‐circuit)  3.3  kV  (13.2  kV)  

NREL  ESIF  –  Golden,  CO   NREL  NWTC  –  Boulder,  CO  

• Su erconductivit and Cr o enics Labs

FSU-CAPS Lab Capabilities • Integrated 5 MW HIL Testbed

– 5 MW variable voltage/frequency converter

– 5 MW dynamometers – 5 MW MVDC converters (MMC)

• Real-time Digital Simulators RTDS & OPAL-RT using typical time step sizes from 2 µs to 50 µs Cyber-physical test bed

• Superconductivity and Cryogenics Labsy y gp – AC Loss and Quench Stability Lab – Cryo-dielectrics High Voltage Lab – Cryo-cooled Systems Lab

• Low Power and Smart Grid Labs • Extensive non-RT simulation tools and

expertise – PSCAD, PSS/E, Matlab, PLECS, OpenDSS, etc. – COMSOL, Magnet, etc.

4

15  MVA  (20  MVA)  4.16  kV  (23.9  kV)  

5  MVA  4.16  kV  

Clemson/DOE  –  N.  Charleston,  SC  Florida  State  Univ.  CAPS  –  Tallahassee,  FL  

See  Proceedings  of  Second  Interna*onal  Workshop  on  Grid  Simulator  Tes*ng  of  Wind  Turbine  Drivetrains:  htp://www.nrel.gov/electricity/transmission/grid-­‐simulator-­‐workshop-­‐2.html    

M.  Steurer,  FSU  CAPS  J.C.  Fox,    Clemson  University  

Page 16: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

16  

PV

Energy Storage

Diesel / NG Generators

AC Loads

Aux / DC Loads

GS

Local Controller

Power Conditioningand Conversion

DC REDB AC REDB

Grid ModelDC Device Models

Bi-directionalProgrammable DC Supply

Bi-directionalGrid Simulator

M M

Local Hardwareat ESIF

ESIFEquipment

Distribution PMUWeather

Real-Time Data User Interface and Visualization

Real-TimeSimulator

LocalUser Interface

Ipv Id Rp

Rs

V

I

Market Pricing

Local UtilityConnection

GSAC Device Models

System Controller PCC

1  MVA  RLC  Load  

27  

Page 17: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

17  

1  MVA  Load  Bank  Manufacturer  and  Base  Model  LoadTec  OSW4c  390  kW/kVARL/kVARC  RLC  Load  Banks  

Modularity  Four  modules  can  be  operated  independently  or  in  parallel      

Basic  Specifica+ons    •  Voltage:  0  –  346  Vl-­‐n  /  600  Vl-­‐l    •  Frequency:      

o  L  and  C:    45  –  65  Hz  o  R:    DC  –  400  Hz  

•  Power:      o  390  kW/kVAR  @  346/600  V  3ɸ  o  250  kW/kVAR  @  277/480  V  3ɸ  o  47  kW/kVAR  @  120/208  V  3ɸ  o  47  kW/kVAR  @  120  V  1ɸ  

•  Resolu1on  o  234  W/VAR  @  346/600  V  3ɸ  o  150  W/VAR  @  277/480  V  3ɸ  o  28  W/VAR  @  120/208  V  3ɸ  o  10  W/VAR  @  120  V  1ɸ  

•  Phase  Configura1on:      o  Balanced  or  Unbalanced  3ɸ  o  Single  Phase  o  Split-­‐Phase  

•  PHIL  Interface:    Digital  kW/kVAR  commands  

•  Sobware  Interface:  o  Load  Profile  Entry  

•  Cooling:    Air-­‐cooled  

Page 18: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

18  

PV

Energy Storage

Diesel / NG Generators

AC Loads

Aux / DC Loads

GS

Local Controller

Power Conditioningand Conversion

DC REDB AC REDB

Grid ModelDC Device Models

Bi-directionalProgrammable DC Supply

Bi-directionalGrid Simulator

M M

Local Hardwareat ESIF

ESIFEquipment

Distribution PMUWeather

Real-Time Data User Interface and Visualization

Real-TimeSimulator

LocalUser Interface

Ipv Id Rp

Rs

V

I

Market Pricing

Local UtilityConnection

GSAC Device Models

System Controller PCC

1.5  MW  PV  Simulator  

27  

Page 19: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

19  

1.5  MW  PV  Simulator  Basic  Specifica+ons  (MTD1000-­‐250)  •  Voltage:  25  –  1000  V  (up  to  4000  V)  •  Current:    250  A  (up  to  1500  A)  •  Power  Flow:    Supply  Only  •  PHIL  Interface:    Analog  input  corresponding  

to  instantaneous  voltage  /  current  waveform  command  

•  Bandwidth:  o  Voltage:    60  Hz  o  Current:    45  Hz  

•  Slew  Rate:  o  Voltage:    4  ms  for  0  –  63%  step  o  Current:    8  ms  for  0  –  63%  step  

•  Load  Transient  Response:    10  ms  to  recover  to  within  ±  1%  of  regulated  output  with  a  50  –  100%  or  100  –  50%  load  step  

•  Load  Regula1on:  o  Voltage:    ±0.01%  of  full  scale  o  Current:  ±0.04%  of  full  scale  

•  Sobware  Interface:  o  PV  IV  Curve  Emula*on    o  Profile  Genera*on  

•  Cooling:    Air-­‐cooled  

Manufacturer  and  Base  Model  Magna-­‐Power  MTD1000-­‐250  (250  kW)  

Modularity  Six  Modules  capable  of  independent,  parallel,  or  series  opera*on  (up  to  4000  V)      

Page 20: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

20  

PV

Energy Storage

Diesel / NG Generators

AC Loads

Aux / DC Loads

GS

Local Controller

Power Conditioningand Conversion

DC REDB AC REDB

Grid ModelDC Device Models

Bi-directionalProgrammable DC Supply

Bi-directionalGrid Simulator

M M

Local Hardwareat ESIF

ESIFEquipment

Distribution PMUWeather

Real-Time Data User Interface and Visualization

Real-TimeSimulator

LocalUser Interface

Ipv Id Rp

Rs

V

I

Market Pricing

Local UtilityConnection

GSAC Device Models

System Controller PCC

660  kW  DC  Supply  27  

Page 21: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

21  

660  kW  Badery/PV  Simulator  Basic  Specifica+ons  (AC2660P)  •  Voltage:  264  –  1000  V  (up  to  2000  V)  •  Current:    2500  A  (up  to  5000  A)  •  Power  Flow:    Bi-­‐direc*onal  •  PHIL  Interface:    Digital  voltage,  

current,  irradiance,  and/or  temperature  commands  

•  Bandwidth:  •  Slew  Rate:  •  Load  Regula1on:  

o  Steady-­‐state:    ±0.5%  o  Transient:    ±3%  

•  Load  Transient  Response:    <  10  ms  for  10  –  90%  or  90  –  10%  load  step  

•  Bandwidth:  o  Voltage  Control:    180  Hz  (500  Hz)  o  Current  Control:  2.0  kHz  (2.5  kHz)  

•  Sobware  Interface:  o  PV  IV  Curve  Emula*on    o  Batery  Emula*on  o  Profile  Genera*on  

•  Cooling:    Liquid-­‐cooled  

Manufacturer  and  Base  Model  Anderson  Electric  Controls  AC2660P  (660  kW)  

Modularity  Currently  one  module,  future  two  modules  capable  of  independent,  parallel  or  series  opera*on      

Page 22: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

22  

Addi1onal  Equipment  •  PV  Simulators  

–  100  kW  Ametek  TerraSAS  •  DC  Supplies  

–  250  kW  AeroVironment  AV-­‐900  •  Load  Banks  

–  100  kW  R-­‐L  (portable)  –  100  kW  R  (portable)  

•  Small  grid  simulators  –  (3)  45  kW  Ametek  MX45  –  (4)  50  kW  Pacific  Power  –  15  kW  Elgar  

•  Diesel  generators  –  125kVA  and  80  kVA  Onan/Cummins  –  300kVA  Caterpillar  

•  Hydrogen  Systems  –  Electrolyzers:    50kW,  10kW  –  Storage  tanks  –  Fuel  cells  

•  Real-­‐Time  Digital  Simulators  –  Opal-­‐RT  (3  racks)  –  RTDS  (1  rack)  

Page 23: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

23  

ESIF  Laboratories  

High  Performance  Compu1ng,  Data  Analysis,  and  Visualiza1on  

16.  ESIF  Control  Room  17.  Energy  Integra*on  Visualiza*on    18.  Secure  Data  Center  19.  High  Performance  Compu*ng  

Data  Center  20.  Insight  Center  Visualiza*on  21.  Insight  Center  Collabora*on    

Fuel  Systems  Laboratories    9.  Energy  Systems  Fabrica*on  10.  Manufacturing  11.  Materials  Characteriza*on  12.  Electrochemical  

Characteriza*on  13.  Energy  Systems  Sensor  14.  Fuel  Cell  Development  &  

Test  15.  Energy  Systems  High  

Pressure  Test  

Thermal  Systems  Laboratories  6.  Thermal  Storage  Process  and  

Components  7.  Thermal  Storage  Materials  8.  Op*cal  Characteriza*on  

Electrical  Systems  Laboratories  1.  Power  Systems  Integra*on  2.  Smart  Power  3.  Energy  Storage  4.  Electrical  Characteriza*on  5.  Energy  Systems  Integra*on  

Page 24: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

24  

ESIF  Research  Infrastructure  Research  Electrical  Distribu*on  Bus  –  REDB  (AC  3ph,  600V,  1600A  and  DC  +/-­‐500V,  1600A)  Thermal  Distribu*on  Bus  Fuel  Distribu*on  Bus  Supervisory  Control  and  Data  Acquisi*on  (SCADA)    

Page 25: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

25  

Research  Electrical  Distribu1on  Bus  (REDB)  

AC • 4-wire plus ground

• Floating or grounded neutral

• 600 Vac

• 16 Hz to 400 Hz

• 250A and 1600A installed

• 250A and 2500A planned (future)

• 4-pole switches

• Connects PSIL, SPL, ESL, GSE, LBE, LVOTA, MVOTA, ESIL

DC • 3-wire plus ground

• Any pole may be grounded

• ±500Vdc or 1000Vdc

• 250A and 1600A installed

• 250A and 2500A planned (future)

• Experiment connection via cart contactor/fuse or direct (main lug only)

• Connects PSIL, SPL, ESL, PVE, LVOTA, MVOTA, ESIL

Page 26: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

26  

Example  Racetrack  and  Lab  Sec1on  

PSIL  Lateral  A  PSIL  Lateral  B   PSIL  Ladder  Tie  Switch  

PSIL  Ladder  B  Switch  PSIL  Ring  Bus  Switch  

PSIL  Ring  Bus  Switch  

PSIL  Ladder  A  Switch  

PSIL  Ladder  Rung  

UC  Ring  Bus  Switch  

Neighboring  Ring  Bus  Switch  for  the  UC  

UC  Lateral  

Ring-­‐*e   Ring-­‐*e  

Page 27: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

27  

REDB  Switchgear  Room  (AC)  

27

Page 28: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

28  

Busway  Connec1ons  in  PSIL  

Page 29: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

29  

Outline  

•  Introduc1on  to  PHIL-­‐based  Uninten1onal  Islanding  Tes1ng    

•  NREL  Experimental  Implementa1on  and  Capabili1es  o  AC/DC  amplifiers  (NREL  and  U.S.)  o  Lab  power  ra*ng  /  grid  level  o  Real-­‐*me  systems  available  o  Interoperability  (technical/communica*on/interface)  

•  PHIL  UI  Test  Results  •  PHIL  co-­‐simula1on  

Page 30: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

30  

Discrete  Hardware  UI  Test  

30

Prac1cal  Limita1ons:  •  RLC  load  bank  overall  (and  step  size)  power  level  •  Discrete  elements  in  RLC  load  bank  •  Execu*on  *me  for  large  number  of  cases  

Page 31: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

31  

PHIL-­‐based  UI  Test  

31

Advantages:  •  Specialized  RLC  load  bank  no  

longer  needed  (though  power  amplifier  and  RTS  required)  

•  Tuning  of  RLC  load  bank  much  more  precise  with  modeled  elements  instead  of  discrete  elements  

•  Execu*on  *me  for  a  single  test  is  much  faster  and  tests  can  be  automated  

Page 32: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

32  

Results  (1-­‐ph)  –  qf  =  1    

32

breaker in the hardware test does not always occur on a zero crossing, but always does

in the PHIL case (the reason for phase o↵set in the results of the first two cases),

variance of trip time within a cycle or two is to be expected. All three cases are very

closely matched time-wise between the hardware and PHIL tests; the first two are

within one cycle and the third is nearly matched.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2−20

−15

−10

−5

0

5

10

15

20

Time (s)

Cur

rent

(A

)

Inverter Current versus Grid Current

hw−iinv

phil−iinv

hw−igrid

phil−igrid

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2−400

−300

−200

−100

0

100

200

300

400

Time (s)

Vol

tage

(V

)

Vpcc Voltage

hw−v

phil−v

Figure 5.9: Results from the task 1 unintentional islanding test for qf = 1.04

One will notice that the grid current (igrid) for the discrete hardware and PHIL tests

does not match perfectly. This is because the EPS model used in the two cases was not the

same; in the discrete hardware case, the EPS was the hardware power amplifier, while, in the

PHIL case, the EPS model was just an ideal voltage source. In any case, what really matters

108

1.  B.  Lundstrom,  B.  Mather,  M.  Shirazi,  and  M.  Coddington,  “Methods  and  Implementa*on  of  Advanced  Uninten*onal  Islanding  Tes*ng  using  Power  Hardware-­‐in-­‐the-­‐Loop  (PHIL),”  in  IEEE  PVSC,  2013.  2.  B.  Lundstrom,  M.  Shirazi,  M.  Coddington,  and  B.  Kroposki,  “An  Advanced  Plazorm  for  Development  and  Evalua*on  of  Grid  Interconnec*on  Systems  using  Hardware-­‐in-­‐the-­‐Loop:  Part  III–Grid  Interconnec*on  System  Evaluator,”  in  IEEE  Green  Technologies  Conference,  Denver,  CO,  April  2013.    

Page 33: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

33  

Results  (1-­‐ph)  –  qf  =  2.84    

33

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2−20

−15

−10

−5

0

5

10

15

20

Time (s)

Cur

rent

(A

)

Inverter Current versus Grid Current

hw−iinv

phil−iinv

hw−igrid

phil−igrid

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2−400

−300

−200

−100

0

100

200

300

400

Time (s)

Vol

tage

(V

)

Vpcc Voltage

hw−v

phil−v

Figure 5.10: Results from the task 1 unintentional islanding test for qf = 2.84

109

1.  B.  Lundstrom,  B.  Mather,  M.  Shirazi,  and  M.  Coddington,  “Methods  and  Implementa*on  of  Advanced  Uninten*onal  Islanding  Tes*ng  using  Power  Hardware-­‐in-­‐the-­‐Loop  (PHIL),”  in  IEEE  PVSC,  2013.  2.  B.  Lundstrom,  M.  Shirazi,  M.  Coddington,  and  B.  Kroposki,  “An  Advanced  Plazorm  for  Development  and  Evalua*on  of  Grid  Interconnec*on  Systems  using  Hardware-­‐in-­‐the-­‐Loop:  Part  III–Grid  Interconnec*on  System  Evaluator,”  in  IEEE  Green  Technologies  Conference,  Denver,  CO,  April  2013.    

Page 34: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

34  

Results  (1-­‐ph)  –  qf  =  4.35  

34

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2−20

−15

−10

−5

0

5

10

15

20

Time (s)

Cur

rent

(A

)

Inverter Current versus Grid Current

hw−iinv

phil−iinv

hw−igrid

phil−igrid

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2−400

−300

−200

−100

0

100

200

300

400

Time (s)

Vol

tage

(V

)

Vpcc Voltage

hw−vphil−v

Figure 5.11: Results from the task 1 unintentional islanding test for qf = 4.35

110

1.  B.  Lundstrom,  B.  Mather,  M.  Shirazi,  and  M.  Coddington,  “Methods  and  Implementa*on  of  Advanced  Uninten*onal  Islanding  Tes*ng  using  Power  Hardware-­‐in-­‐the-­‐Loop  (PHIL),”  in  IEEE  PVSC,  2013.  2.  B.  Lundstrom,  M.  Shirazi,  M.  Coddington,  and  B.  Kroposki,  “An  Advanced  Plazorm  for  Development  and  Evalua*on  of  Grid  Interconnec*on  Systems  using  Hardware-­‐in-­‐the-­‐Loop:  Part  III–Grid  Interconnec*on  System  Evaluator,”  in  IEEE  Green  Technologies  Conference,  Denver,  CO,  April  2013.    

Page 35: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

35  

Results  (1-­‐ph)  –  repe11on  of  qf  =  2.84  case  

35

is that the inverter’s response matches in both hardware and PHIL tests. This was the case,

so no emphasis was placed on trying to use the same EPS model in both cases to get better

matching between the grid currents of the two tests. In terms of repeatability, the results of

five runs of the same test case (qf = 2.84) using the PHIL method are shown in Figure 5.12.

It can be seen that the PHIL is very repeatable. Again, a small variance (1-2 cycles) in trip

times is expected due to the variance in the inverter’s anti-islanding algorithms. In all, these

results show very clearly that the PHIL and discrete hardware methods match very closely

and that the PHIL technique is repeatable, validating the PHIL approach.

−0.1 −0.05 0 0.05 0.1 0.15 0.2−20

−15

−10

−5

0

5

10

15

20Currents

1

2

3

4

5

−0.1 −0.05 0 0.05 0.1 0.15 0.2−400

−300

−200

−100

0

100

200

300

400Voltages

1

2

3

4

5

Figure 5.12: Inverter current and voltage from repeated tests of the task 1 unintentionalislanding test for qf = 2.84

111

Consistency  of  Results  

Page 36: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

36  

Results  (1-­‐ph)  –  repe11on  of  qf  =  2.84  case  

36

Precision  of  Circuit  Model  (Tuning)  in  PHIL  

%%)%&* %%)%&*' %%)%&+ %%)%&+' %%)%&, %%)%&,' %%)"

-%$

$

%$

������� ��(�

���������-��� ����

������ �

Figure 5.13: Results from the task 2 unintentional islanding test for qf ⇠= 1 with a poorly-tuned RLC load (igrid1 ⇠= 0.02 · iinv,FL)

113

qf  =  1  (discrete  HW  tuning)  Trip  in  0.156s  

����� ����� ����� ����� ��� ����� �����

���

��

(������

Figure 5.14: Results from the task 2 unintentional islanding test for qf ⇠= 1 with a well-tunedRLC load (igrid1 ⇠= 0.002 · iinv,FL)

114

qf  =  1  (well  tuned  in  SW)  Trip  in  1.08s  

limit of IEEE Std 1547-2003 [18]. When repeating the same test, but for a quality factor

of 5, the inverter never detected the island condition and continued to operate indefinitely.

These results confirm that the variable RLC load PHIL approach is e↵ective for achieving

conditions di�cult to replicate with discrete hardware and that the technique is applicable

over a wide range of quality factors.

�� !" �� !# ��$ ��$!% ��$! ��$!" ��$!# ��" ��"!% ��"! ��"!"

&�'

'

�'

������ �

Figure 5.15: Results from the task 2 unintentional islanding test for qf ⇠= 3 with a well-tunedRLC load (igrid1 ⇠= 0.002 · iinv,FL)

115

qf  =  3  (well  tuned  in  SW)  Trip  in  1.8s  

qf  =  5  (well  tuned  in  SW)  Ran  indefinitely  

Page 37: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

37  

Hardware:  •  (EUT)  Advanced  Energy  500TX  500  kW  PV  Inverter  

•  810  kVA  Grid  Simulator  with  analog  control  

•  1.5  MW  PV  Simulator  •  1  MVA  (150  VA)  RLC  Load  Bank  

•  LEM  current  and  voltage  transducers  

Real-­‐1me  Modeling:  •  Opal-­‐RT  eMegaSim  RTS  •  Real-­‐*me  model  developed  in  SimPowerSystems  (no  co-­‐simula*on)  

•  ITM  interface  •  Phase  compensa*on  •  HW  feedback  filtering  •  33  μs  <  Ts  <  66  μs    

 

PV Simulator

AC RLC Load BankInverterLocal PCC Model

Grid Simulator

M

Local Controller

Grid Model

DC R

EDB

M

AC REDB

VpccIinv

Vpcc

Vpcc

Iinv

StaticPV Array

Uninten1onal  Islanding  PHIL:  Test  Setup  

Page 38: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

38  

Uninten1onal  Islanding  PHIL:  Test  Setup  

Page 39: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

39  

Results  (3-­‐ph)  –  Best  Comparison  Example  

Page 40: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

40  

Preliminary  Results  (3-­‐ph)  –  Spread  

0   100   200   300   400   500   600   700  

PHIL-­‐UF  

PHIL-­‐OF  

HW-­‐UF  

HW-­‐OF  

Trip  Time  (ms)  for  same  RLC  Load  Condi*on  

Also  see:  M.  Steurer  et.  al.,  “Progress  on  PHIL  based  An*-­‐Islanding  Tes*ng  of  PV  Converters”.  Proceedings  of  Second  Interna8onal  Workshop  on  Grid  Simulator  Tes8ng  of  Wind  Turbine  Drivetrains.  Available:  htp://www.nrel.gov/electricity/transmission/grid-­‐simulator-­‐workshop-­‐2.html  for  similar  results  on  smaller  converter  

   

Page 41: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

41  

Outline  

•  Introduc1on  to  PHIL-­‐based  Uninten1onal  Islanding  Tes1ng    

•  NREL  Experimental  Implementa1on  and  Capabili1es  o  AC/DC  amplifiers  (NREL  and  U.S.)  o  Lab  power  ra*ng  /  grid  level  o  Real-­‐*me  systems  available  o  Interoperability  (technical/communica*on/interface)  

•  PHIL  UI  Test  Results  •  PHIL  co-­‐simula1on  

Page 42: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

42  

PHIL  Co-­‐simula1on:  Mo1va1on  

•  Leverage  benefits  of  PHIL:  o  Examine  system-­‐level  and  mul*-­‐device  impacts  o  Repeatability  of  complex  scenarios  o  Flexible,  modular  

•  But  add:  o  Simplify  model  conversion  o  Allow  use  of  more  complex,  mul*-­‐discipline  system  models  without  simplifica*on  or  abstrac*on  

o  Connec*on/link  of  mul*ple  sites  into  a  single  PHIL  simula*on  

•  Within  limita1ons  

Page 43: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

43  

A  Testbed  for  Distributed  Integra1on  

•  Arbitrary  Grid  o  Loca*on  o  Topology  &  Equipment  

•  Any  scenario  o  Rou*ne  o  Con*ngency  

•  Actual  Hardware  o  No  (proprietary)  model  required  

•  Co-­‐simula1on  o  U*lize  exis*ng  off-­‐the-­‐shelf  so|ware  with  no  model  conversion  required  

25  

Grid  Interconnec*on  Hardware  Simula8on  

Power  System  Simula*on  

Computer  Model  

Device(s)  Under  Test  

Device  Under  Test  Device(s)  Under  Test  

Co-­‐Simula*on  

PHIL  Simula*on  

Page 44: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

44  

GridLAB-D Electric Distribution System ModelRunning in Real-Time Mode

PV Inverter 1

PV Simulator 1

Phase A

Phase C

Phase BN

Load Bank 1

Grid Simulator

ControlSet points

Measurements

NREL

PNNL

Weather Data

InverterCurrents

PCC Voltages

PV Inverter 2

PV Simulator 2

Load Bank 2

InverterCurrent

7200V Primary 3-phase

75 kVASplit-phase

Center-tappedTransformers

Triplex Nodes

HomesInverter 2Inverter 1 Homes

VPCC1 VPCC2

IEEE 8500 Node Feeder with Building Loads Phase A Phase C

Triplex Line

Hardware under Test (HUT)

FPGA-based I/O

JSON-Link UDP/IP Communication over Ethernet

Grid PCC Model Weather Model

Real-Time Simulator

VPN Tunnel

PV Model

200

400

600

800

1000

1200IEEE8500 Inverter 2 Time Series

PO

A Ir

radi

ance

(W/m

2 )

20

30

40

50

60

70

80

Rea

l Pow

er(k

W)

−50

−40

−30

−20

−10

0

10

Rea

ctiv

e P

ower

(kV

Ar)

12:47 12:48 12:49 12:50 12:51 12:52240

245

250

255

260

265

270P

CC

Vol

tage

(V

)

Time (MDT)

No Solar PF=1 PF=0.81 absorbing Volt/VAR Control

28  

Page 45: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

45  

27

Test Case # 3: Three-phase Inverter • IEEE 8500-node test feeder

- One 7 kVA real-inverter output scaled up to 140 kVA in GridLAB-D simulation

- This hardware inverter was operating in VVC

- Added a large number small UPF inverters; combined output of 800 kW

• Cloud transient was implemented based on historical weather data

• The hardware inverter with VVC was capable of maintaining constant voltage on the secondary

12:35 12:40 12:45122

123

124

125

126

127

128

|V| m

ax

Maximum voltage magnitude on secondary system

no solar base case

distributed PF=1.0 solar

distributed PF=1.0 solar and VVC solar

0

500

1000

1500

Irra

dia

nce

(W/m

2)

10

20

30

40

50

Ph

ase

A R

eal

Po

wer

(kW

)

-40

-20

0

20

Ph

ase

A R

eact

ive

Po

wer

(kV

Ar)

12:35 12:40 12:45275

280

285

290

Ph

ase

A |V

| at

PC

C(V

)

base PF=1.0 PF=0.81

Figure 4 shows power generation and |V| at the inverter PCC over a 10-minute period with a cloud transient. As in the case of the single-phase inverters, voltage increases as compared to the no-solar base case when the inverter is operated with PF = 1.0. Unlike in the single-phase inverter case described above, the PF = 0.81 case is not well-tuned to control voltage with this combination of inverter output and PCC location. This demonstrates how operating in a fixed-PF mode, while it has the benefits of simplicity, will not result in optimal behavior. The impact to the distribution feeder’s voltage profile will differ depending on the interaction of the PV output under changing irradiance conditions, the inverter size, and the characteristics of the feeder at the PCC. B.2 Hardware inverter with additional modeled solar

The voltage on the secondary system can be studied under different PV penetration scenarios. In systems without distributed generation (DG), power flow is unidirectional, and voltage may drop up to 3V from the transformer to the meter due to the impedance of the triplex cable [12]. In systems with DG, there may be local reverse power flow in the triplex line, potentially leading to over-voltage problems. ANSI C84.1 defines acceptable operating envelope for steady-state voltage levels as 95-105% of nominal voltage [19], which may be violated when there is reverse power flow [20].

Because the simulated electrical distribution systems modeled in GridLAB-D include detailed models of secondary service transformers and triplex cables, the PHIL test platform described here is well-suited to study how new modes of inverter control affect voltages on the secondary system.

Figure 5 shows the maximum voltage at any point in the secondary system. The modeled system is the IEEE 8500-node test feeder. Three cases are considered. 1. Base case. In the base case (black trace), no solar PV is added to the system, and the voltage is well within acceptable limits and almost constant over a 10-minute period. 2. Modeled distributed solar PV. High levels of modeled distributed solar PV generation are added to the base case (blue trace), with inverters operating at PF = 1.0. Each residential load is given a solar PV array of 15-30% of its total square footage, leading to a net feeder real power demand of near 0W during the 10-minute time period shown. The voltage on the backbone is held to normal levels by the action of the voltage regulators. The maximum voltage on the secondary system rises to over 125.2V and at the cloud transient shortly after 12:40, the maximum voltage tracks the irradiance levels. 3. Modeled distributed solar PV and hardware inverter. Case 2 is used as the model distribution system for a PHIL test case (red trace), where the three-phase hardware inverter is operated in VVC mode, modifying Q in response to |V| at the PCC. The distributed PV at unity PF have a combined power output of 800kVA; the hardware PV contribution is scaled up in software to a maximum power of 140kVA. The action of the hardware inverter in VVC mode has the effect of maintaining the maximum voltage on the secondary system at

a constant level through the cloud transient, mitigating some of the effects of the unity power factor solar PV.

IV. ADDITIONAL APPLICATIONS OF PHIL PLATFORM

In addition to the examples discussed above, there are many system-level quantities and phenomena that may be studied with this type of PHIL test platform. Two additional examples are briefly described in this section: the effect of an inverter’s control mode on actions of other voltage control devices throughout the feeder and the feeder-wide voltage profile.

A. Effect of Solar PV on Voltage Control Devices

The impact of high-penetration levels of solar PV on the actions of voltage control devices is of concern to utilities. High-penetration levels of solar PV may cause increased tap changes or switching operations, resulting in higher maintenance costs and decreased equipment lifetimes. Quasi-static time-series simulations have been used to study this effect [21], and show a range of impacts depending on feeder characteristics, solar PV size and placement, and inverter control mode. Changes in tap counts are highly sensitive to these parameters, making it important to use accurate representation of advanced inverter control modes in conjunction with detailed voltage control device and feeder power flow models. In situations where adequate models may not exist, as in the case of newly developed control modes, a PHIL test platform can provide the necessary accuracy, and has the additional advantage of being able to test a wide array of electric distribution system configurations.

In the test cases described in Section III, the output of the hardware inverters does not change in response to a cloud transient sufficiently to cause additional tap changes.

12:35 12:40 12:45122

123

124

125

126

127

128

|V| m

ax

Maximum voltage magnitude on secondary system

no solar base case

distributed PF=1.0 solar

distributed PF=1.0 solar and VVC solar

Figure 5: Maximum voltage magnitude at any point in the secondary system, for three different solar PV penetration scenarios.

29  

Page 46: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

46  

Distributed  Control  of  Energy  Storage  •  NREL  integrated  Power  Hardware  in  the  Loop  (PHIL)  

simula1on  of  energy  storage  +  PV  with  residen1al  inverter  •  ±10kW  badery  +  10kW  PV  •  123  node  grid  simula1on  

© CYME International, June 2011

CYME QA Validation Tests CasesLoad Flow -Unbalanced - IEEE 123 Node Test Feeder

CYME Power Engineering Software

A self-contained study file (.sxst) to use with this document is provided. The explanations below are based on the use of that file.

n Highlights

x Comparison between CYME Load flow analysis voltage drop unbalanced method results against those published in the document “IEEE 123 node test feeder” by IEEE Distribution system analysis subcommittee.

x Simulation includes comparison of results obtained with the method of voltage drop unbalanced: line currents and bus voltages.

x 123 bus system with overhead and underground line segments with various phasing , unbalanced loading with all combinations of load types (PQ, constant I, constant Z), four step-type voltage regulators, shunt capacitor banks and switching to provide alternate paths of power-flow.

o Load Flow Analysis

1. Open the IEEE_123_node_test_feeder.sxst self-contained study file. To do so, go to the the dialog box displayed using the Help > Validation Cases menu option. Select the “Load Flow - Unbalanced” option in the List of test cases and enable the check box next to the file name. Click on the Start Case button.

2. Select the Analysis > Load Flow menu option. Ensure that the Calculation Method is Voltage Drop – Unbalanced. Leave all the other parameters intact.

3. Click on to Run the analysis.

IEEE 123 Node Feeder Model

Page 47: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

47  

28

Panorama of Complete Hardware Setup

Three-phase Setup

Real-time System (Opal-RT)

Grid Simulator

Single-phase Setup

30  

Page 48: Advanced(Laboratory(Tes1ng(Methods( · PDF fileAdvanced(Laboratory(Tes1ng(Methods ... outside the requirements of ANSI C84.1-1995, Range A” [18]. ... limits from ANSI C84.1 Range

48  

Thank  you  

Blake  Lundstrom  [email protected]  

33